Open Access

Electrical characterization of bolus material as phantom for use in electrical impedance and computed tomography fusion imaging


Cite

Facius M, Malich A, Schneider G, Boehm T, Anderson R, and Kaiser W. Electrical Impedance Scanning used in addition to ultrasound for the verification of submandibular and parotid lesions: initial results. Invest. Radiol. 2002;37(8):421–427. http://dx.doi.org/10.1097/00004424-200208000-0000210.1097/00004424-200208000-0000212138357FaciusMMalichASchneiderGBoehmTAndersonRKaiserWElectrical Impedance Scanning used in addition to ultrasound for the verification of submandibular and parotid lesions: initial resultsInvest. Radiol2002378421427http://dx.doi.org/10.1097/00004424-200208000-0000212138357Open DOISearch in Google Scholar

Krishnan K, Liu J, Thomas S, and Kohli K. A Phantom to Assess EIT/CT Imaging System. In 55th AAPM, 2013.KrishnanKLiuJThomasSKohliKA Phantom to Assess EIT/CT Imaging System. In 55th AAPM2013Search in Google Scholar

Robinson MP, Richardson MJ, Green LJ, and Preece AW. New materials for dielectric simulation of tissues. Phys. Med. Biol. 1991;36(12):1565–1571. http://dx.doi.org/10.1088/0031-9155/36/12/00210.1088/0031-9155/36/12/0021771180RobinsonMPRichardsonMJGreenLJPreeceAWNew materials for dielectric simulation of tissuesPhys. Med. Biol1991361215651571http://dx.doi.org/10.1088/0031-9155/36/12/0021771180Open DOISearch in Google Scholar

Porter E, Fakhoury J, Oprisor R, Coates M, and Popovic M. Improved Tissue Phantoms for Experimental Validation of Microwave Breast Cancer Detection. Proceedings of the Fourth European Conference on Antennas & Propagation (EuCAP). 2010: pp. 1–5.PorterEFakhouryJOprisorRCoatesMPopovicMImproved Tissue Phantoms for Experimental Validation of Microwave Breast Cancer DetectionProceedings of the Fourth European Conference on Antennas & Propagation (EuCAP)201015Search in Google Scholar

Chen R and Shih A. Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties. Phys. Med. Biol. 2013;58(16):5511–5525. http://dx.doi.org/10.1088/0031-9155/58/16/551110.1088/0031-9155/58/16/5511ChenRShihAMulti-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties. PhysMed. Biol2013581655115525http://dx.doi.org/10.1088/0031-9155/58/16/551123880566Open DOISearch in Google Scholar

Ramaseshan R, Kohli K, Cao F, and Heaton R. Dosimetric evaluation of Plastic Water Diagnostic Therapy. J. Appl. Clin. Med. Phys. 2008;9(2),98-111.10.1120/jacmp.v9i2.2761RamaseshanRKohliKCaoFHeatonRDosimetric evaluation of Plastic Water Diagnostic TherapyJ. Appl. Clin. Med. Phys20089298111572170618714282Open DOISearch in Google Scholar

Banaee N, Nedaie HA, Nosrati H, Nabavi M, and Naderi M. Dose Measurement of Different Bolus Materials on Surface Dose. J. Radioprot. Res. 2013;1(1):10–13.10.12966/jrr.08.02.2013BanaeeNNedaieHANosratiHNabaviMNaderiMDose Measurement of Different Bolus Materials on Surface DoseJ. Radioprot. Res2013111013Open DOISearch in Google Scholar

Seppala T, Collan J, Auterinen Ii, and Seren T. A dosimetric study on the use of bolus materials for treatment of superficial tumors with BNCT. Appl. Radiat. Isot. 2004;61:787–791. http://dx.doi.org/10.1016/j.apradiso.2004.05.05410.1016/j.apradiso.2004.05.054SeppalaTCollanJAuterinenIiSerenTA dosimetric study on the use of bolus materials for treatment of superficial tumors with BNCTAppl. Radiat. Isot200461787791http://dx.doi.org/10.1016/j.apradiso.2004.05.05415308145Open DOISearch in Google Scholar

Spitz H, Jenkins M, Lodwick J, and Bornschein R. A new anthropometric phantom for calibrating in vivo measurments of stable lead in the human leg using x-ray fluorescence. Health Phys. 2000;78(2):159–169. http://dx.doi.org/10.1097/00004032-200002000-0000510.1097/00004032-200002000-00005SpitzHJenkinsMLodwickJBornscheinRA new anthropometric phantom for calibrating in vivo measurments of stable lead in the human leg using x-ray fluorescenceHealth Phys2000782159169http://dx.doi.org/10.1097/00004032-200002000-0000510647982Open DOISearch in Google Scholar

Freed M, Badal A, Jennings RJ, de las Heras H, Myers KJ, and Badano A. X-ray properties of an anthropomorphic breast phantom for MRI and X-ray imaging. Phys. Med. Biol. 2011;56(12):3513-3545. http://dx.doi.org/10.1088/0031-9155/56/12/0052160655610.1088/0031-9155/56/12/005FreedMBadalAJenningsRJde lasHeras HMyersKJBadanoAX-ray properties of an anthropomorphic breast phantom for MRI and X-ray imagingPhys. Med. Biol2011561235133545http://dx.doi.org/10.1088/0031-9155/56/12/00521606556Search in Google Scholar

"Superflab." [Online]. Available: http://www.micknuclear.com/page_external_beam/external_beam_accessories3.asp Accessed: 11 Dec 2013."Superflab."http://www.micknuclear.com/page_external_beam/external_beam_accessories3.aspAccessed: 11 Dec2013Search in Google Scholar

Marchal C, Nadi M, Tosser A, Roussey C, and Gaulard M. Dielectric properties of gelatine phantoms used for simulations of biological tissues between 10 and 50 MHz. Int. J. Hyperth. 1989;5(6):725–732. http://dx.doi.org/10.3109/0265673890914049710.3109/02656738909140497MarchalCNadiMTosserARousseyCGaulardMDielectric properties of gelatine phantoms used for simulations of biological tissues between 10 and 50 MHzInt. J. Hyperth198956725732http://dx.doi.org/10.3109/026567389091404972592786Open DOISearch in Google Scholar

Oh TI, Koo H, Lee KH, Kim SM, Lee J, Kim SW, Seo JK, and Woo EJ. Validation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imaging. Physiol. Meas. 2008;29(3):295–307. http://dx.doi.org/10.1088/0967-3334/29/3/00210.1088/0967-3334/29/3/00218367806OhTIKooHLeeKHKimSMLeeJKimSWSeoJKWooEJValidation of a multi-frequency electrical impedance tomography (mfEIT) system KHU Mark1: impedance spectroscopy and time-difference imagingPhysiol. Meas2008293295307http://dx.doi.org/10.1088/0967-3334/29/3/00218367806Open DOISearch in Google Scholar

"Zurich Instruments." [Online]. Available: http://www.zhinst.com/products/hf2is Accessed: 11 Dec 2013."Zurich Instruments."http://www.zhinst.com/products/hf2isAccessed: 11 Dec2013Search in Google Scholar

"American National Standards: Safe Current Limit for electromedical appparatus guidelines." [Online]. Available: http://courses.engr.illinois.edu/ece445/documents/Safe_Current_Limits.pdf Accessed: 11 Dec 2013."American National Standards: Safe Current Limit for electromedical appparatus guidelines." [Online]http://courses.engr.illinois.edu/ece445/documents/Safe_Current_Limits.pdfAccessed: 11 Dec2013Search in Google Scholar

Halter RJ and Al E. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience. Physiol. Meas. 2009;30:S121–S136. http://dx.doi.org/10.1088/0967-3334/30/6/S0810.1088/0967-3334/30/6/S0819491436HalterRJAlEThe correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experiencePhysiol. Meas200930S121S136http://dx.doi.org/10.1088/0967-3334/30/6/S08279289919491436Open DOISearch in Google Scholar

Foster K and Schwan HP. Dielectric Properties of Tissues and Biological Materials: A Critical Review. Crit. Rev. Biomed. Eng. 1989;17(1):25–104.2651001FosterKSchwanHPDielectric Properties of Tissues and Biological Materials: A Critical ReviewCrit. Rev. Biomed. Eng198917125104Search in Google Scholar

Winter J, et al. The Material Properties of Gelatin Gels. National Technical Information Service. US Dept. of Commerce.1975.WinterJet alThe Material Properties of Gelatin Gels. National Technical Information ServiceUS Dept. of Commerce197510.21236/ADA008396Search in Google Scholar

Grimnes S and Martinsen OG. Bioimpedance and Bioelectricity Basics. 2. ed. Elsevier Science. 2008.GrimnesSMartinsenOGBioimpedance and Bioelectricity Basics. 2. ed. Elsevier Science200810.1016/B978-0-12-374004-5.00010-6Search in Google Scholar