Open Access

A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?


Cite

Ajdari A. Pumping liquids using asymmetric electrode arrays. Phys. Rev. E 2000, 61: 45-48. http://dx.doi.org/10.1103/PhysRevE.61.R4510.1103/PhysRevE.61.R45AjdariAPumping liquids using asymmetric electrode arraysPhys. Rev. E2000614548http://dx.doi.org/10.1103/PhysRevE.61.R45Open DOISearch in Google Scholar

Asami K, Hanai T, Koizumi N. Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn. J. Appl. Phys. 1980, 19: 359-365. http://dx.doi.org/10.1143/JJAP.19.35910.1143/JJAP.19.359AsamiKHanaiTKoizumiNDielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cellsJpn. J. Appl. Phys198019359365http://dx.doi.org/10.1143/JJAP.19.359Open DOISearch in Google Scholar

Barat D, Spencer D, Benazzi, G, Mowlem MC, Morgan H. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer. Lab Chip 2012, 12: 118-126. http://dx.doi.org/10.1039/c1lc20785g10.1039/C1LC20785G22051732BaratDSpencerDBenazziGMowlemMCMorganHSimultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometerLab Chip201212118126http://dx.doi.org/10.1039/c1lc20785gOpen DOISearch in Google Scholar

Becker FF, Wang XB, Huang Y, Pethig R, Vykoukal J, Gascoyne PRC. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. USA. 1995, 92: 860–864. http://dx.doi.org/10.1073/pnas.92.3.86010.1073/pnas.92.3.860BeckerFFWangXBHuangYPethigRVykoukalJGascoynePRCSeparation of human breast cancer cells from blood by differential dielectric affinityProc. Natl. Acad. Sci. USA199592860864http://dx.doi.org/10.1073/pnas.92.3.860Open DOISearch in Google Scholar

Bousse L, Mcreynolds RJ, Kirk G, Dawes T, Lam P, Bemiss WR. Micromachined multichannel systems for the measurement of cellular-metabolism. Sens. Actuators B-Chemical 1994, 20: 145-150. http://dx.doi.org/10.1016/0925-4005(94)01196-610.1016/0925-4005(94)01196-6BousseLMcreynoldsRJKirkGDawesTLamPBemissWRMicromachined multichannel systems for the measurement of cellular-metabolismSens. Actuators B-Chemical199420145150http://dx.doi.org/10.1016/0925-4005(94)01196-6Open DOISearch in Google Scholar

Bousse L, Parce W. Applying silicon micromachining to cellular-metabolism. IEEE Engin. Med. Biol. Mag. 1994, 13: 396-401. http://dx.doi.org/10.1109/51.29401110.1109/51.294011BousseLParceWApplying silicon micromachining to cellular-metabolismIEEE Engin. Med. Biol. Mag199413396401http://dx.doi.org/10.1109/51.294011Open DOISearch in Google Scholar

Buehler SM, Stubbe M, Gimsa U, Baumann W, Gimsa J. A decrease of intracellular ATP is compensated by increased respiration and acidification at sub-lethal parathion concentrations in murine embryonic neuronal cells: measurements in metabolic cell-culture chips. Tox. Lett. 2011, 207: 182-190. http://dx.doi.org/10.1016/j.toxlet.2011.09.00510.1016/j.toxlet.2011.09.005BuehlerSMStubbeMGimsaUBaumannWGimsaJA decrease of intracellular ATP is compensated by increased respiration and acidification at sub-lethal parathion concentrations in murine embryonic neuronal cells: measurements in metabolic cell-culture chipsTox. Lett2011207182190http://dx.doi.org/10.1016/j.toxlet.2011.09.00521939746Open DOISearch in Google Scholar

Ceriotti L, Kob A, Drechsler S, Ponti J, Thedinga E, Colpo P, Ehret R. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal. Biochem. 2007, 371: 92-104. http://dx.doi.org/10.1016/j.ab.2007.07.01410.1016/j.ab.2007.07.01417709091CeriottiLKobADrechslerSPontiJThedingaEColpoPEhretROnline monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based systemAnal. Biochem200737192104http://dx.doi.org/10.1016/j.ab.2007.07.01417709091Open DOISearch in Google Scholar

Daridon A, Fascio V, Lichtenberg J, Wutrich R, Langen H, Verpoorte E, de Rooij NF. Multi-layer microfluidic glass chips for microanalytical applications. Fresenius J. Anal. Chem. 2001, 371: 261-269. http://dx.doi.org/10.1007/s00216010100410.1007/s00216010100411678200DaridonAFascioVLichtenbergJWutrichRLangenHVerpoorteEdeRooij NFMulti-layer microfluidic glass chips for microanalytical applicationsFresenius J. Anal. Chem2001371261269http://dx.doi.org/10.1007/s00216010100411678200Open DOISearch in Google Scholar

Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat. Rev. Drug Discov. 2008, 7: 358-368. http://dx.doi.org/10.1038/nrd25521835691910.1038/nrd2552DunlopJBowlbyMPeriRVasilyevDAriasRHigh-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiologyNat. Rev. Drug Discov20087358368http://dx.doi.org/10.1038/nrd255218356919Search in Google Scholar

Dürr M, Kentsch J, Müller T, Schnelle T, Stelzle M. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 2003, 24: 722–731. http://dx.doi.org/10.1002/elps.2003900871260174410.1002/elps.200390087DürrMKentschJMüllerTSchnelleTStelzleMMicrodevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresisElectrophoresis200324722731http://dx.doi.org/10.1002/elps.200390087Search in Google Scholar

Ehret R, Baumann W, Brischwein M, Schwinde A, Stegbauer K, Wolf B. Monitoring of cellular behaviour by impedance measurements on interdigitated electrode structures. Biosens. Bioelectron. 1997, 12: 29-41. http://dx.doi.org/10.1016/0956-5663(96)89087-7897605010.1016/0956-5663(96)89087-7EhretRBaumannWBrischweinMSchwindeAStegbauerKWolfBMonitoring of cellular behaviour by impedance measurements on interdigitated electrode structuresBiosens. Bioelectron1997122941http://dx.doi.org/10.1016/0956-5663(96)89087-7Search in Google Scholar

El-Ali J, Sorger PK, Jensen KF. Cells on chips. Nature 2006, 442: 403-411. http://dx.doi.org/10.1038/nature0506310.1038/nature05063El-AliJSorgerPKJensenKFCells on chipsNature2006442403411http://dx.doi.org/10.1038/nature05063Open DOISearch in Google Scholar

Fiedler S, Shirley SG, Schnelle T, Fuhr G. Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 1998, 70: 1909-1915. http://dx.doi.org/10.1021/ac971063b10.1021/ac971063bFiedlerSShirleySGSchnelleTFuhrGDielectrophoretic sorting of particles and cells in a microsystemAnal. Chem19987019091915http://dx.doi.org/10.1021/ac971063bOpen DOISearch in Google Scholar

Foster KR, Schwan HP. 1996, Dielectric properties of tissues. Handbook of biological effects of electromagnetic fields. Polk C, Postow E (Eds.) CRC Press Inc., Boca Raton, FL. 25-102.FosterKRSchwanHP.1996Dielectric properties of tissues. Handbook of biological effects of electromagnetic fieldsPolkCPostowEEdsCRC Press IncBoca Raton, FL25102Search in Google Scholar

Fricke H. Relation of the permittivity of biological cell suspensions to fractional cell volume. Nature 1953, 172: 731–732. http://dx.doi.org/10.1038/172731a010.1038/172731a0FrickeHRelation of the permittivity of biological cell suspensions to fractional cell volumeNature1953172731732http://dx.doi.org/10.1038/172731a0Open DOISearch in Google Scholar

Fuhr G, Hagedorn R, Müller T, Benecke W, Wagner B. Microfabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivity. J. Microelectromech. Syst. 1992, 1: 141-146. http://dx.doi.org/10.1109/84.18639310.1109/84.186393FuhrGHagedornRMüllerTBeneckeWWagnerBMicrofabricated electrohydrodynamic (EHD) pumps for liquids of higher conductivityJ. Microelectromech. Syst19921141146http://dx.doi.org/10.1109/84.186393Open DOISearch in Google Scholar

Fuhr G, Schnelle T, Wagner B. Travelling wave driven microfabricated electrohydrodynamic pumps for liquids. J. Micromech. Microeng. 1994, 4: 217-226. http://dx.doi.org/10.1088/0960-1317/4/4/00710.1088/0960-1317/4/4/007FuhrGSchnelleTWagnerBTravelling wave driven microfabricated electrohydrodynamic pumps for liquidsJ. Micromech. Microeng19944217226http://dx.doi.org/10.1088/0960-1317/4/4/007Open DOISearch in Google Scholar

Fuhr G, Müller T, Glasser H, Gimsa J, Hofmann U, Wagner B. Handling and investigation of adherently growing cells and viruses of medical relevance in three-dimensional micro-structures. MEMS 97, 1997. Proceedings - IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems. 344-349.FuhrGMüllerTGlasserHGimsaJHofmannUWagnerBHandling and investigation of adherently growing cells and viruses of medical relevance in three-dimensional micro-structures. MEMS 97, 1997Proceedings - IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems34434910.1109/MEMSYS.1997.581851Search in Google Scholar

Fuhr GR, Reichle C. Living cells in opto-electrical cages. Trends Anal. Chem. 2000, 19: 402-409. http://dx.doi.org/10.1016/S0165-9936(00)00015-710.1016/S0165-9936(00)00015-7FuhrGRReichleCLiving cells in opto-electrical cagesTrends Anal. Chem200019402409http://dx.doi.org/10.1016/S0165-9936(00)00015-7Open DOISearch in Google Scholar

García-Sánchez P, Ramos A, Green NG, Morgan H. Experiments on AC electrokinetic pumping of liquids using arrays of microelectrodes. J. Phys. D: Appl. Phys. 2006, 47: 075501García-SánchezPRamosAGreenNGMorganHExperiments on AC electrokinetic pumping of liquids using arrays of microelectrodesJ. Phys. D: Appl. Phys20064707550110.1109/TDEI.2006.1657983Search in Google Scholar

Georgieva R, Neu B, Shilov VM, Knippel E, Budde A, Latza R, Donath E, Kiesewetter, Bäumler H. Low frequency electrorotation of fixed red blood cells. Biophys. J. 1998, 74: 2114-2120. http://dx.doi.org/10.1016/S0006-3495(98)77918-4954507010.1016/S0006-3495(98)77918-4GeorgievaRNeuBShilovVMKnippelEBuddeALatzaRDonathEKiesewetterBäumler HLow frequency electrorotation of fixed red blood cellsBiophys. J19987421142120http://dx.doi.org/10.1016/S0006-3495(98)77918-4Search in Google Scholar

Gimsa J. New light-scattering and field-trapping methods access the internal structure of submicron particles, like influenza viruses. Riu PJ, Rosell J, Bragos R, Casas O (Eds.) Electrical bio-impedance methods. Applications to medicine and biotechnology. New York: Ann. New York Acad. Sciences. 1999, 287-298.GimsaJNew light-scattering and field-trapping methods access the internal structure of submicron particles, like influenza virusesRiuPJRosellJBragosRCasasOEdsElectrical bio-impedance methods. Applications to medicine and biotechnologyNew YorkAnn. New York AcadSciences199928729810.1111/j.1749-6632.1999.tb09476.xSearch in Google Scholar

Gimsa J. A comprehensive approach to electro-orientation, electro-deformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochem. 2001, 54: 23-31. http://dx.doi.org/10.1016/S0302-4598(01)00106-410.1016/S0302-4598(01)00106-4GimsaJA comprehensive approach to electro-orientation, electro-deformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cellsBioelectrochem2001542331http://dx.doi.org/10.1016/S0302-4598(01)00106-4Open DOISearch in Google Scholar

Gimsa J, Eppmann P, Prüger B. Introducing phase analysis light scattering for dielectric characterization: Measurement of traveling-wave pumping. Biophys. J. 1997, 73: 3309-3316. http://dx.doi.org/10.1016/S0006-3495(97)78355-310.1016/S0006-3495(97)78355-39414241GimsaJEppmannPPrügerBIntroducing phase analysis light scattering for dielectric characterization: Measurement of traveling-wave pumpingBiophys. J19977333093316http://dx.doi.org/10.1016/S0006-3495(97)78355-3Open DOISearch in Google Scholar

Gimsa J, Glaser R, Fuhr G. Theory and application of the rotation of biological cells in rotating electric fields (electrorotation). Schütt W, Klinkmann H, Lamprecht I, Wilson T (Eds.) Physical characterization of biological cells (Berlin: Verlag Gesundheit GmbH Berlin) 1991, 295-323.GimsaJGlaserRFuhrGTheory and application of the rotation of biological cells in rotating electric fields (electrorotation)SchüttWKlinkmannHLamprechtIWilsonTEdsPhysical characterization of biological cellsBerlinVerlag Gesundheit GmbH Berlin1991295323Search in Google Scholar

Gimsa J, Pritzen C, Donath E. Characterization of virus - red cell interaction by electrorotation. Stud. Biophys. 1989, 130: 123-131.GimsaJPritzenCDonathECharacterization of virus - red cell interaction by electrorotationStud. Biophys1989130123131Search in Google Scholar

Gimsa J, Wachner D. A unified RC-model for impedance, dielectrophoresis, electrorotation and induced transmembrane potential. Biophys. J. 1998, 75: 1107-1116. http://dx.doi.org/10.1016/S0006-3495(98)77600-310.1016/S0006-3495(98)77600-39675212GimsaJWachnerDA unified RC-model for impedance, dielectrophoresis, electrorotation and induced transmembrane potentialBiophys. J19987511071116http://dx.doi.org/10.1016/S0006-3495(98)77600-3Open DOISearch in Google Scholar

Gimsa J, Wachner D. A polarization model overcoming the geometric restrictions of Laplace's solution for spheroidal cells: Obtaining new equations for field induced forces and transmembrane potential. Biophys. J. 1999, 77: 1316-1326. http://dx.doi.org/10.1016/S0006-3495(99)76981-X1046574410.1016/S0006-3495(99)76981-XGimsaJWachnerDA polarization model overcoming the geometric restrictions of Laplace's solution for spheroidal cells: Obtaining new equations for field induced forces and transmembrane potentialBiophys. J19997713161326http://dx.doi.org/10.1016/S0006-3495(99)76981-XSearch in Google Scholar

Gimsa J, Wachner D. On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Eur. Biophys. J. 2001, 30: 463-466. http://dx.doi.org/10.1007/s0024901001621171830110.1007/s002490100162GimsaJWachnerDOn the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductanceEur. Biophys. J200130463466http://dx.doi.org/10.1007/s002490100162Search in Google Scholar

Glynne-Jones P, Hill M, Acoustofluidics 23: acoustic manipulation combined with other force fields. Lab Chip, 2013, 13: 1003-1010. http://dx.doi.org/10.1039/c3lc41369a10.1039/C3LC41369A23385298Glynne-JonesPHillMAcoustofluidics 23: acoustic manipulation combined with other force fieldsLab Chip20131310031010http://dx.doi.org/10.1039/c3lc41369aOpen DOISearch in Google Scholar

Goater AD, Burt JPH, Pethig R. A combined travelling wave dielectrophoresis and electrorotation device: applied to the concentration and viability determination of Cryptosporidium. J. Phys. D: Appl. Phys. 1997, 30: L65–L69. http://dx.doi.org/10.1088/0022-3727/30/18/00110.1088/0022-3727/30/18/001GoaterADBurtJPHPethigRA combined travelling wave dielectrophoresis and electrorotation device: applied to the concentration and viability determination of CryptosporidiumJ. Phys. D: Appl. Phys199730L65L69http://dx.doi.org/10.1088/0022-3727/30/18/001Open DOISearch in Google Scholar

Griffin JL. Orientation of human and avian erythrocytes in radio-frequency fields. Exp. Cell Res. 1970, 61: 113-120. http://dx.doi.org/10.1016/0014-4827(70)90263-6543161010.1016/0014-4827(70)90263-6GriffinJLOrientation of human and avian erythrocytes in radio-frequency fieldsExp. Cell Res197061113120http://dx.doi.org/10.1016/0014-4827(70)90263-6Search in Google Scholar

Grom F, Kentsch J, Müller T, Schnelle T, Stelzle M. Accumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresis. Electrophoresis 2006, 27: 1386 - 1393. http://dx.doi.org/10.1002/elps.20050041610.1002/elps.20050041616568408GromFKentschJMüller TSchnelleTStelzleMAccumulation and trapping of hepatitis A virus particles by electrohydrodynamic flow and dielectrophoresisElectrophoresis20062713861393http://dx.doi.org/10.1002/elps.200500416Open DOISearch in Google Scholar

Gross GW, Rhoades BK, Azzazy HME, Wu M-C. The use of neuronal networks on multielectrode arrays as biosensors, Biosens. Bioelectr. 1995, 10: 553–567. http://dx.doi.org/10.1016/0956-5663(95)96931-N10.1016/0956-5663(95)96931-NGrossGWRhoadesBKAzzazyHMEWuM-CThe use of neuronal networks on multielectrode arrays as biosensors, BiosensBioelectr199510553–567http://dx.doi.org/10.1016/0956-5663(95)96931-NOpen DOISearch in Google Scholar

Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Käs J, Ulvick S, Bilby C. Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys. J. 2005, 88: 3689-3698. http://dx.doi.org/10.1529/biophysj.104.0454761572243310.1529/biophysj.104.045476GuckJSchinkingerSLincolnBWottawahFEbertSRomeykeMLenzDEricksonHMAnanthakrishnanRMitchellDKäs JUlvickSBilbyCOptical deformability as an inherent cell marker for testing malignant transformation and metastatic competenceBiophys. J20058836893698http://dx.doi.org/10.1529/biophysj.104.045476Search in Google Scholar

Hagedorn, R, Fuhr G, Müller T, Gimsa J. 1992. Traveling-wave dielectrophoresis of microparticles. Electrophoresis. 13: 49-54. http://dx.doi.org/10.1002/elps.1150130110158725410.1002/elps.1150130110HagedornRFuhrGMüllerTGimsaJ1992Traveling-wave dielectrophoresis of microparticlesElectrophoresis134954http://dx.doi.org/10.1002/elps.1150130110Search in Google Scholar

Haia A, Spira ME. On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. Lab Chip, 2012, 12: 2865-2873. http://dx.doi.org/10.1039/c2lc40091j10.1039/c2lc40091j22678065HaiaASpiraMEOn-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodesLab Chip20121228652873http://dx.doi.org/10.1039/c2lc40091jOpen DOISearch in Google Scholar

Hölzel R. Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHz. Biophys J. 1997, 73: 1103–1109. http://dx.doi.org/10.1016/S0006-3495(97)78142-6925182610.1016/S0006-3495(97)78142-6HölzelR.Electrorotation of single yeast cells at frequencies between 100 Hz and 1.6 GHzBiophys J19977311031109http://dx.doi.org/10.1016/S0006-3495(97)78142-6Search in Google Scholar

Hughes MP, Pethig R, Wang X-B Dielectrophoretic forces on particles in travelling electric fields. J. Phys. D: Appl. Phys. 1996, 29: 474-482. http://dx.doi.org/10.1088/0022-3727/29/2/02910.1088/0022-3727/29/2/029HughesMPPethigRWang X-B Dielectrophoretic forces on particles in travelling electric fields. JPhys. D: Appl. Phys199629474482http://dx.doi.org/10.1088/0022-3727/29/2/029Open DOISearch in Google Scholar

Jones TB. Electromechanics of Particles, Cambridge University Press, Cambridge, 1995. http://dx.doi.org/10.1017/CBO9780511574498JonesTBElectromechanics of ParticlesCambridge University PressCambridge1995http://dx.doi.org/10.1017/CBO978051157449810.1017/CBO9780511574498Search in Google Scholar

Kafka J, Pänke O, Abendroth B, Lisdat F. A label-free DNA sensor based on impedance spectroscopy. Electrochim. Acta. 2008, 53: 7467-7474. http://dx.doi.org/10.1016/j.electacta.2008.01.03110.1016/j.electacta.2008.01.031KafkaJPänkeOAbendrothBLisdatFA label-free DNA sensor based on impedance spectroscopyElectrochim. Acta20085374677474http://dx.doi.org/10.1016/j.electacta.2008.01.031Open DOISearch in Google Scholar

Koester PJ, Bühler SM, Stubbe M, Tautorat C, Niendorf M, Baumann W, Gimsa J. Modular glass chip system measuring the electric activity and adhesion of neuronal cells - application and drug testing with sodium valproic acid. Lab Chip 2010a, 10: 1579-1586. http://dx.doi.org/10.1039/b923687b10.1039/b923687bKoesterPJBühler SMStubbeMTautoratCNiendorfMBaumannWGimsaJModular glass chip system measuring the electric activity and adhesion of neuronal cells - application and drug testing with sodium valproic acidLab Chip2010a1015791586http://dx.doi.org/10.1039/b923687b20358045Open DOISearch in Google Scholar

Koester PJ, Tautorat C, Beikirch H, Gimsa J, Baumann W. Recording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporation. Biosens. Bioelectr. 2010b, 26: 1731–1735. http://dx.doi.org/10.1016/j.bios.2010.08.00310.1016/j.bios.2010.08.003KoesterPJTautoratCBeikirchHGimsaJBaumannWRecording electric potentials from single adherent cells with 3D microelectrode arrays after local electroporationBiosens. Bioelectr2010b2617311735http://dx.doi.org/10.1016/j.bios.2010.08.003Open DOISearch in Google Scholar

Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL. Micro total analysis systems for cell biology and biochemical assays. Anal. Chem. 2012, 84: 516-540. http://dx.doi.org/10.1021/ac202611x10.1021/ac202611x21967743KovarikMLGachPCOrnoffDMWangYBalowskiJFarragLAllbrittonNLMicro total analysis systems for cell biology and biochemical assaysAnal. Chem201284516540http://dx.doi.org/10.1021/ac202611xOpen DOISearch in Google Scholar

Laurell T, Petersson F, Nilsson A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 2007, 36: 492-506. http://dx.doi.org/10.1039/b601326k10.1039/B601326K17325788LaurellTPeterssonFNilssonAChip integrated strategies for acoustic separation and manipulation of cells and particlesChem. Soc. Rev200736492506http://dx.doi.org/10.1039/b601326kOpen DOISearch in Google Scholar

Liu W, Ren Y, Shao J, Jiang H, Ding Y. A theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradient. J. Phys. D: Appl. Phys. 2014, 47: 075501. http://dx.doi.org/10.1088/0022-3727/47/7/07550110.1088/0022-3727/47/7/075501LiuWRenYShaoJJiangHDingYA theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradientJ. Phys. D: Appl. Phys201447075501http://dx.doi.org/10.1088/0022-3727/47/7/075501Open DOISearch in Google Scholar

Maier H. Electrorotation of colloidal particles and cells depends on surface charge. Biophys. J. 1997, 73: 1617-1626. http://dx.doi.org/10.1016/S0006-3495(97)78193-110.1016/S0006-3495(97)78193-19284328MaierHElectrorotation of colloidal particles and cells depends on surface chargeBiophys. J19977316171626http://dx.doi.org/10.1016/S0006-3495(97)78193-1Open DOISearch in Google Scholar

Marczak M, Diesinger H. Traveling wave dielectrophoresis micropump based on the dispersion of a capacitive electrode layer J. Appl. Phys. 2009, 105: 124511. http://dx.doi.org/10.1063/1.315278710.1063/1.3152787MarczakMDiesingerHTraveling wave dielectrophoresis micropump based on the dispersion of a capacitive electrode layer JAppl. Phys2009105124511http://dx.doi.org/10.1063/1.3152787Open DOISearch in Google Scholar

Marszalek P, Liu D-S, Tsong TY. Schwan equation and transmembrane potential induced by alternating electric field. Biophys. J. 1990, 58: 1053-1058. http://dx.doi.org/10.1016/S0006-3495(90)82447-410.1016/S0006-3495(90)82447-42248989MarszalekPLiuD-STsongTYSchwan equation and transmembrane potential induced by alternating electric fieldBiophys. J19905810531058http://dx.doi.org/10.1016/S0006-3495(90)82447-4Open DOISearch in Google Scholar

Maswiwat K, Holtappels M, Gimsa J. On the field distribution in electrorotation chambers - influence of electrode shape. Electrochim. Acta. 2006, 51: 5215-5220 http://dx.doi.org/10.1016/j.electacta.2006.03.04810.1016/j.electacta.2006.03.048MaswiwatKHoltappelsMGimsaJOn the field distribution in electrorotation chambers - influence of electrode shapeElectrochim. Acta20065152155220http://dx.doi.org/10.1016/j.electacta.2006.03.048Open DOISearch in Google Scholar

Morgan H, Izquierdo AG, Bakewell D, Green NG, Ramos A. The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series. J. Phys. D: App. Phys. 2001, 34: 1553-1561. http://dx.doi.org/10.1088/0022-3727/34/10/31610.1088/0022-3727/34/10/316MorganHIzquierdoAGBakewellDGreenNGRamosAThe dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier seriesJ. Phys. D: App. Phys20013415531561http://dx.doi.org/10.1088/0022-3727/34/10/316Open DOISearch in Google Scholar

Müller T, Gradl G, Howitz S, Shirley S, Schnelle T, G. Fuhr G. A 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelec. 1999, 14: 247-256. http://dx.doi.org/10.1016/S0956-5663(99)00006-8MüllerTGradlGHowitzSShirleySSchnelleT, G.Fuhr GA 3-D microelectrode system for handling and caging single cells and particles. Biosens. Bioelec199914247256http://dx.doi.org/10.1016/S0956-5663(99)00006-810.1016/S0956-5663(99)00006-8Search in Google Scholar

Neu B, Georgieva R, Meiselman HJ, Bäumler H. Alpha- and beta-dispersion of fixed platelets: comparison with a structure-based theoretical approach. Coll. Surf. A: Physicochem. Eng. Aspects 2002, 197: 27-35. http://dx.doi.org/10.1016/S0927-7757(01)00860-310.1016/S0927-7757(01)00860-3NeuBGeorgievaRMeiselmanHJBäumlerH.Alpha- and beta-dispersion of fixed platelets: comparison with a structure-based theoretical approachColl. Surf. A: Physicochem. Eng. Aspects20021972735http://dx.doi.org/10.1016/S0927-7757(01)00860-3Open DOISearch in Google Scholar

Nilsson J, Evander M, Hammarström B, Laurell T. Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 2009, 649: 141-157. http://dx.doi.org/10.1016/j.aca.2009.07.0171969939010.1016/j.aca.2009.07.017NilssonJEvanderMHammarströmBLaurellTReview of cell and particle trapping in microfluidic systemsAnal. Chim. Acta2009649141157http://dx.doi.org/10.1016/j.aca.2009.07.01719699390Search in Google Scholar

Oberti S, Neild A, Möller D, Dual J. Strategies for single particle manipulation using acoustic radiation forces and external tools. Phys. Procedia 2010, 3: 255-262. http://dx.doi.org/10.1016/j.phpro.2010.01.03410.1016/j.phpro.2010.01.034ObertiSNeildAMöller DDualJStrategies for single particle manipulation using acoustic radiation forces and external toolsPhys. Procedia20103255262http://dx.doi.org/10.1016/j.phpro.2010.01.034Open DOISearch in Google Scholar

Pan D, Chen J, Nie L, Tao W, Yao S. An amperometric glucose biosensor based on poly(o-aminophenol) and Prussian blue films at platinum electrode. Anal. Biochem. 2004, 324: 115-122. http://dx.doi.org/10.1016/j.ab.2003.09.02910.1016/j.ab.2003.09.02914654053PanDChenJNieLTaoWYaoSAn amperometric glucose biosensor based on poly(o-aminophenol) and Prussian blue films at platinum electrodeAnal. Biochem2004324115122http://dx.doi.org/10.1016/j.ab.2003.09.02914654053Open DOISearch in Google Scholar

Pauly H, Schwan HP. Über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale. Z. Naturforsch. 1959, 14b: 125-131. (in German)PaulyHSchwanHPÜber die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale. ZNaturforsch195914b125131in German10.1515/znb-1959-0213Search in Google Scholar

Perch-Nielsen IR, Green NG, Wolff A. Numerical simulation of travelling wave induced electrothermal fluid flow. J. Phys. D: Appl. Phys. 2004, 37: 2323-2330.10.1088/0022-3727/37/16/016Perch-NielsenIRGreenNGWolffANumerical simulation of travelling wave induced electrothermal fluid flowJ. Phys. D: Appl. Phys20043723232330Open DOISearch in Google Scholar

Pethig R, Talary MS, Lee RS. Enhancing traveling-wave dielectrophoresis with signal superposition. IEEE Eng. Med. Biol. Mag. 2003, 22: 43-50. http://dx.doi.org/10.1109/MEMB.2003.12660461500799010.1109/MEMB.2003.1266046PethigRTalaryMSLeeRSEnhancing traveling-wave dielectrophoresis with signal superpositionIEEE Eng. Med. Biol. Mag2003224350http://dx.doi.org/10.1109/MEMB.2003.126604615007990Search in Google Scholar

Py C, Salim D, Monette R, Comas T, Fraser J, Martinez D, Martina M, Mealing G. Cell to aperture interaction in patch-clamp chips visualized by fluorescence microscopy and focused-ion beam sections. Biotech. Bioeng. 2011, 108: 1936-1941. http://dx.doi.org/10.1002/bit.2312710.1002/bit.23127PyCSalimDMonetteRComasTFraserJMartinezDMartinaMMealingGCell to aperture interaction in patch-clamp chips visualized by fluorescence microscopy and focused-ion beam sectionsBiotech. Bioeng201110819361941http://dx.doi.org/10.1002/bit.2312721391207Open DOISearch in Google Scholar

Ramos A, Morgan H, Green NG, González A, Castellanos A. Pumping of liquids with traveling-wave electroosmosis. J. Appl. Phys. 2005, 97: 084906. http://dx.doi.org/10.1063/1.187303410.1063/1.1873034RamosAMorganHGreenNGGonzálezACastellanosAPumping of liquids with traveling-wave electroosmosisJ. Appl. Phys200597084906http://dx.doi.org/10.1063/1.1873034Open DOISearch in Google Scholar

Retelj L, Pucihar G, Miklavcic D, Electroporation of intracellular liposomes using nanosecond electric pulses - a theoretical study. IEEE Trans. Biomed. Eng. 2013, 60: 2624–2635. http://dx.doi.org/10.1109/TBME.2013.2262177ReteljLPuciharGMiklavcicDElectroporation of intracellular liposomes using nanosecond electric pulses - a theoretical study. IEEE TransBiomed. Eng20136026242635http://dx.doi.org/10.1109/TBME.2013.226217710.1109/TBME.2013.226217723674414Search in Google Scholar

Schnelle T, Müller T, Reichle C, Fuhr G. Combined dielectrophoretic field cages and laser tweezers for electrorotation. Appl. Phys. B 2000, 70: 267-274. http://dx.doi.org/10.1007/s00340005004410.1007/s003400050044SchnelleTMüller TReichleCFuhrGCombined dielectrophoretic field cages and laser tweezers for electrorotationAppl. Phys. B200070267274http://dx.doi.org/10.1007/s003400050044Open DOISearch in Google Scholar

Schwan, HP. Biophysics of the interaction of electromagnetic energy with cells and membranes. In: Grandolfo M, Michaelson SM, Rindi A (Eds.) Biological effects and dosimetry of nonionizing radiation. 1983. Plenum Press, New York (USA), pp. 213-231. http://dx.doi.org/10.1007/978-1-4684-4253-3_9SchwanHPBiophysics of the interaction of electromagnetic energy with cells and membranesInGrandolfoMMichaelsonSMRindiAEdsBiological effects and dosimetry of nonionizing radiation1983Plenum PressNew York (USA)pp213231http://dx.doi.org/10.1007/978-1-4684-4253-3_910.1007/978-1-4684-4253-3_9Search in Google Scholar

Schwan HP, Schwarz G., Maczuk J, Pauly H. On the low-frequency dielectric dispersion of colloidal particles in electrolyte solution. J. Phys. Chem. 1962, 66: 2626-2635. http://dx.doi.org/10.1021/j100818a06610.1021/j100818a066SchwanHPSchwarzG.MaczukJPaulyHOn the low-frequency dielectric dispersion of colloidal particles in electrolyte solutionJ. Phys. Chem19626626262635http://dx.doi.org/10.1021/j100818a066Open DOISearch in Google Scholar

Schoenbach KH, Joshi RP, Kolb JF, Chen N, Stacey M, Blackmore PF, Buescher PF, Beebe SJ. Ultrashort electrical pulses open a new gateway into biological cells. Proc. IEEE 2004, 92: 1122-1137. http://dx.doi.org/10.1109/JPROC.2004.82900910.1109/JPROC.2004.829009SchoenbachKHJoshiRPKolbJFChenNStaceyMBlackmorePFBuescherPFBeebeSJUltrashort electrical pulses open a new gateway into biological cellsProc. IEEE20049211221137http://dx.doi.org/10.1109/JPROC.2004.829009Open DOISearch in Google Scholar

Shih SCC, Barbulovic-Nad I, Yang X, Fobel R, Wheeler AR. Digital microfluidics with impedance sensing for integrated cell culture and analysis. Biosens. Bioelectr. 2013, 42: 314-320. http://dx.doi.org/10.1016/j.bios.2012.10.03510.1016/j.bios.2012.10.035ShihSCCBarbulovic-NadIYangXFobelRWheelerARDigital microfluidics with impedance sensing for integrated cell culture and analysisBiosens. Bioelectr201342314320http://dx.doi.org/10.1016/j.bios.2012.10.035Open DOISearch in Google Scholar

Simeonova M, Wachner D, Gimsa J. Cellular absorption of electric field energy: influence of molecular properties of the cytoplasm. Bioelectrochem. 2002, 56: 215-218. http://dx.doi.org/10.1016/S1567-5394(02)00010-510.1016/S1567-5394(02)00010-5SimeonovaMWachnerDGimsaJCellular absorption of electric field energy: influence of molecular properties of the cytoplasmBioelectrochem200256215218http://dx.doi.org/10.1016/S1567-5394(02)00010-5Open DOISearch in Google Scholar

Stubbe M, Holtappels M, Gimsa J. A new working principle for ac electro-hydrodynamic on-chip micro-pumps. J. Phys. D: Appl. Phys. 2007, 40: 6850-6856. http://dx.doi.org/10.1088/0022-3727/40/21/05510.1088/0022-3727/40/21/055StubbeMHoltappelsMGimsaJA new working principle for ac electro-hydrodynamic on-chip micro-pumpsJ. Phys. D: Appl. Phys20074068506856http://dx.doi.org/10.1088/0022-3727/40/21/055Open DOISearch in Google Scholar

Stubbe M, Gyurova A, Gimsa J. Experimental verification of an equivalent circuit for the characterization of electrothermal micropumps: High pumping velocities induced by the external inductance at driving voltages below 5V. Electrophoresis 2013, 34: 562-574. http://dx.doi.org/10.1002/elps.20120034010.1002/elps.201200340StubbeMGyurovaAGimsaJExperimental verification of an equivalent circuit for the characterization of electrothermal micropumps: High pumping velocities induced by the external inductance at driving voltages below 5VElectrophoresis201334562574http://dx.doi.org/10.1002/elps.20120034023161729Open DOISearch in Google Scholar

Stubbe M, Gimsa, J. Electro-thermal Micro-pumps: exploiting structural polarizations at smeared interfaces. NSTI-Nanotech 2013, 2: 334-337.StubbeMGimsaJElectro-thermal Micro-pumps: exploiting structural polarizations at smeared interfacesNSTI-Nanotech20132334337Search in Google Scholar

Sun T, Morgan H. Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluid 2010, 8: 423-443. http://dx.doi.org/10.1007/s10404-010-0580-910.1007/s10404-010-0580-9SunTMorganHSingle-cell microfluidic impedance cytometry: a reviewMicrofluid Nanofluid20108423443http://dx.doi.org/10.1007/s10404-010-0580-9Open DOISearch in Google Scholar

Urbanski JP, Thorsen T, Levitan JA, Bazant MZ. Fast ac electro-osmotic micropumps with nonplanar electrodes. Appl. Phys. Lett. 2006, 89: 143508. http://dx.doi.org/10.1063/1.235882310.1063/1.2358823UrbanskiJPThorsenTLevitanJABazantMZFast ac electro-osmotic micropumps with nonplanar electrodesAppl. Phys. Lett200689143508http://dx.doi.org/10.1063/1.2358823Open DOISearch in Google Scholar

Wachner D, Simeonova M, Gimsa J. Estimating the subcellular absorption of electric field energy: equations for an ellipsoidal single shell model. Bioelectrochem. 2002, 56: 211-213. http://dx.doi.org/10.1016/S1567-5394(02)00020-810.1016/S1567-5394(02)00020-8WachnerDSimeonovaMGimsaJEstimating the subcellular absorption of electric field energy: equations for an ellipsoidal single shell modelBioelectrochem200256211213http://dx.doi.org/10.1016/S1567-5394(02)00020-8Open DOISearch in Google Scholar

Wolf B, Brischwein M, Grothe H, Stepper C, Ressler J, Weyh T. Lab-on-a-chip systems for cellular assays. In: Urban G (Ed.) BioMEMS. 2006. Springer, Dordrecht (NL), pp. 269-308.WolfBBrischweinMGrotheHStepperCResslerJWeyhTLab-on-a-chip systems for cellular assaysInUrbanGEdBioMEMS2006SpringerDordrecht (NL)pp26930810.1007/978-0-387-28732-4_9Search in Google Scholar

Yang CY, Lei U. Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis. J. Appl. Phys. 2007, 102: 094702. http://dx.doi.org/10.1063/1.280218510.1063/1.2802185YangCYLeiUQuasistatic force and torque on ellipsoidal particles under generalized dielectrophoresisJ. Appl. Phys2007102094702http://dx.doi.org/10.1063/1.2802185Open DOISearch in Google Scholar

Zimmerman V, Shilov VN, López-Garcia JJ, Grosse C. Numerical calculation of the electrorotation velocity of latex-type particles. J. Phys. Chem. B 2002, 106: 13384-13392.10.1021/jp026127nZimmermanVShilovVNLópez-Garcia JJGrosseCNumerical calculation of the electrorotation velocity of latex-type particlesJ. Phys. Chem. B20021061338413392Open DOISearch in Google Scholar