Open Access

Analysis of a Mechanistic Model for Non-invasive Bioimpedance of Intact Skin


Cite

Martinsen OG, Grimnes S. 9. In: Bioimpedance and bioelectricity basics. Academic press; 2014. p. 335–362. https://doi-org.libproxy1.nus.edu.sg/10.1016/B978-0-12-411470-8.00009-XMartinsenOGGrimnesS9Bioimpedance and bioelectricity basicsAcademic press2014335–362doi-org.libproxy1.nus.edu.sg/10.1016/B978-0-12-411470-8.00009-XSearch in Google Scholar

Grimnes S, Martinsen O. Cole electrical impedance model – a critique and an alternative. IEEE transactions on biomedical engineering. 2005;52(1):132–135. https://doi.org/10.1109/TBME.2004.836499GrimnesSMartinsenO.Cole electrical impedance model – a critique and an alternativeIEEE transactions on biomedical engineering2005521132135doi.org/10.1109/TBME.2004.836499Open DOISearch in Google Scholar

Martinsen Ø, Grimnes S, Sveen O. Dielectric properties of some keratinised tissues. Part 1: Stratum corneum and nail in situ. Medical and Biological Engineering and Computing. 1997;35(3):172–176. https://doi.org/10.1007/BF02530033MartinsenØGrimnesSSveenODielectric properties of some keratinised tissues. Part 1: Stratum corneum and nail in situMedical and Biological Engineering and Computing1997353172176doi.org/10.1007/BF0253003310.1007/BF02530033Search in Google Scholar

McAdams E, Jossinet J. Tissue impedance: a historical overview. Physiological measurement. 1995;16(3A):A1. https://doi.org/10.1088/0967-3334/16/3A/001McAdamsEJossinetJTissue impedance: a historical overviewPhysiological measurement1995163AA1doi.org/10.1088/0967-3334/16/3A/00110.1088/0967-3334/16/3A/001Search in Google Scholar

McAdams E, Jossinet J. Problems in equivalent circuit modelling of the electrical properties of biological tissues. Bioelectrochemistry and bioenergetics. 1996;40(2):147–152. https://doi.org/10.1016/0302-4598(96)05069-6McAdamsEJossinetJ Problems in equivalent circuit modelling of the electrical properties of biological tissuesBioelectrochemistry and bioenergetics1996402147152doi.org/10.1016/0302-4598(96)05069-610.1016/0302-4598(96)05069-6Search in Google Scholar

Reilly JP. Applied bioelectricity: from electrical stimulation to electropathology. Springer Science & Business Media; 2012. https://doi.org/10.1007/978-1-4612-1664-3ReillyJPApplied bioelectricity: from electrical stimulation to electropathologySpringer Science & Business Media2012doi.org/10.1007/978-1-4612-1664-310.1088/0967-3334/20/2/701Search in Google Scholar

White EA, Horne A, Runciman J, Orazem ME, Navidi WC, Roper CS, et al. On the correlation between single-frequency impedance measurements and human skin permeability to water. Toxicology in Vitro. 2011;25(8):2095–2104. https://doi.org/10.1016/j.tiv.2011.09.011WhiteEAHorneARuncimanJOrazemMENavidiWCRoperCSOn the correlation between single-frequency impedance measurements and human skin permeability to waterToxicology in Vitro201125820952104doi.org/10.1016/j.tiv.2011.09.011Open DOISearch in Google Scholar

Poon C, Choy T. Frequency dispersions of human skin dielectrics. Biophysical journal. 1981;34(1):135. https://doi.org/10.1016/S0006-3495(81)84841-2PoonCChoyTFrequency dispersions of human skin dielectricsBiophysical journal1981341135doi.org/10.1016/S0006-3495(81)84841-210.1016/S0006-3495(81)84841-2Search in Google Scholar

Cole KS. Permeability and impermeability of cell membranes for ions. In: Cold Spring Harbor Symposia https://doi.org/10.1101/SQB.1940.008.01.013ColeKSPermeability and impermeability of cell membranes for ionsCold Spring Harbor Symposiadoi.org/10.1101/SQB.1940.008.01.013Open DOISearch in Google Scholar

Cole KS, Cole RH. Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of chemical physics. 1941;9(4):341–351. https://doi.org/10.1063/1.1750906ColeKSColeRHDispersion and absorption in dielectrics I. Alternating current characteristicsThe Journal of chemical physics194194341351doi.org/10.1063/1.1750906Open DOISearch in Google Scholar

Hartinger AE, Guardo R, Kokta V, Gagnon H. A 3-D hybrid finite element model to characterize the electrical behavior of cutaneous tissues. IEEE Transactions on Biomedical Engineering. 2010;57(4):780–789. https://doi.org/10.1109/TBME.2009.2036371HartingerAEGuardoRKoktaVGagnonHA 3-D hybrid finite element model to characterize the electrical behavior of cutaneous tissuesIEEE Transactions on Biomedical Engineering2010574780789doi.org/10.1109/TBME.2009.2036371Open DOISearch in Google Scholar

Birgersson U, Birgersson E, Åberg P, Nicander I, Ollmar S. Non-invasive bioimpedance of intact skin: mathematical modeling and experiments. Physiological measurement. 2010;32(1):1. https://doi.org/10.1088/0967-3334/32/1/001BirgerssonUBirgerssonEÅbergPNicanderIOllmarSNon-invasive bioimpedance of intact skin: mathematical modeling and experimentsPhysiological measurement20103211doi.org/10.1088/0967-3334/32/1/00110.1088/0967-3334/32/1/001Search in Google Scholar

Birgersson UH, Birgersson E, Ollmar S. Estimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurements. Journal of Electrical Bioimpedance. 2012;3(1):51–60. https://doi.org/10.5617/jeb.400BirgerssonUHBirgerssonEOllmarSEstimating electrical properties and the thickness of skin with electrical impedance spectroscopy: Mathematical analysis and measurementsJournal of Electrical Bioimpedance2012315160doi.org/10.5617/jeb.400Open DOISearch in Google Scholar

Miller CE, Henriquez CS. Finite element analysis of bioelectric phenomena. Critical reviews in biomedical engineering. 1989;18(3):207–233. europepmc.org/abstract/med/2286094MillerCEHenriquezCSFinite element analysis of bioelectric phenomenaCritical reviews in biomedical engineering1989183207233europepmc.org/abstract/med/2286094Search in Google Scholar

Bédard C, Kröger H, Destexhe A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical journal. 2004;86(3):1829–1842. https://doi.org/10.1016/S0006-3495(04)74250-2BédardCKrögerHDestexheAModeling extracellular field potentials and the frequency-filtering properties of extracellular spaceBiophysical journal200486318291842doi.org/10.1016/S0006-3495(04)74250-210.1016/S0006-3495(04)74250-2Search in Google Scholar

Huclova S, Erni D, Fröhlich J. Modelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition. Journal of Physics D: Applied Physics. 2011;45(2):025301. https://doi.org/10.1088/0022-3727/45/2/025301HuclovaSErniDFröhlichJModelling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material compositionJournal of Physics D: Applied Physics2011452025301doi.org/10.1088/0022-3727/45/2/02530110.1088/0022-3727/45/2/025301Search in Google Scholar

Birgersson U, Birgersson E, Nicander I, Ollmar S. A methodology for extracting the electrical properties of human skin. Physiological measurement. 2013;34(6):723. https://doi.org/10.1088/0967-3334/34/6/723BirgerssonUBirgerssonENicanderIOllmarSA methodology for extracting the electrical properties of human skinPhysiological measurement2013346723doi.org/10.1088/0967-3334/34/6/72310.1088/0967-3334/34/6/72323719278Search in Google Scholar

Birgersson U. Electrical impedance of human skin and tissue alterations: Mathematical modeling and measurements. Inst för klinisk vetenskap, Dept of Clinical Science, Intervention and Technology; 2012. https://openarchive.ki.se/xmlui/handle/10616/41328BirgerssonUElectrical impedance of human skin and tissue alterations: Mathematical modeling and measurementsInst för klinisk vetenskap, Dept of Clinical Science, Intervention and Technology2012openarchive.ki.se/xmlui/handle/10616/41328Search in Google Scholar

Jackson JD. Appendix. In: Classical electrodynamics. Wiley; 1999. p. 780–781. as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.htmlJacksonJDAppendixClassical electrodynamicsWiley1999780–781as.wiley.com/WileyCDA/WileyTitle/productCd-047130932X.htmlSearch in Google Scholar

Lide DR. CRC handbook of chemistry and physics. vol. 85. CRC press; 2004. www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-85th-Edition/Lide/p/book/9780849304859LideDRCRC handbook of chemistry and physicsvol. 85CRC press2004www.crcpress.com/CRC-Handbook-of-Chemistry-and-Physics-85th-Edition/Lide/p/book/9780849304859Search in Google Scholar

Cheng H, Zhang Y, Huang X, Rogers JA, Huang Y. Analysis of a concentric coplanar capacitor for epidermal hydration sensing. Sensors and Actuators A: Physical. 2013;203:149–153. https://doi.org/10.1016/j.sna.2013.08.037ChengHZhangYHuangXRogersJAHuangYAnalysis of a concentric coplanar capacitor for epidermal hydration sensingSensors and Actuators A: Physical2013203149153doi.org/10.1016/j.sna.2013.08.037Open DOISearch in Google Scholar

COMSOL. COMSOL Multiphysics 5.2a; 2016. Available from: www.comsol.com/COMSOLCOMSOL Multiphysics 5.2a2016Available fromwww.comsol.com/Search in Google Scholar

Matlab. MATLAB R2015; 2016. Available from: www.mathworks.com/products/matlabMatlabMATLAB R20152016Available fromwww.mathworks.com/products/matlabSearch in Google Scholar