Open Access

Impedance of tissue-mimicking phantom material under compression


Cite

Sun T, Gawad S, Bernabini C, Green NG, Morgan H. Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations. Meas. Sci. Technol. 2007 Jul.20;18(9):2859–68. http://dx.doi.org/10.1088/0957-0233/18/9/01510.1088/0957-0233/18/9/015SunTGawadSBernabiniCGreenNGMorganHBroadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerationsMeas. Sci. Technol2007Jul.20189285968http://dx.doi.org/10.1088/0957-0233/18/9/015Open DOISearch in Google Scholar

K'Owino IO, Sadik OA. Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture Monitoring. Electroanalysis. 2005 Dec.;17(23):2101–13. http://dx.doi.org/10.1002/elan.20050337110.1002/elan.200503371K'OwinoIOSadikOAImpedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture MonitoringElectroanalysis20051723210113http://dx.doi.org/10.1002/elan.200503371Open DOISearch in Google Scholar

Miklavčič D, Pavšelj N, Hart FX. Electric properties of tissues. Wiley Encyclopedia of Biomedical Engineering. Wiley Online Library; 2006.MiklavčičDPavšeljNHartFXElectric properties of tissues. Wiley Encyclopedia of Biomedical EngineeringWiley Online Library200610.1002/9780471740360.ebs0403Search in Google Scholar

Paulson KS, Pidcock MK, McLeod CN. A Probe for Organ Impedance Measurement. IEEE Trans. Biomed. Eng. 2004 Oct.;51(10):1838–44. http://dx.doi.org/10.1109/TBME.2004.83151810.1109/TBME.2004.83151815490831PaulsonKSPidcockMKMcLeodCNA Probe for Organ Impedance MeasurementIEEE Trans. Biomed. Eng20045110183844http://dx.doi.org/10.1109/TBME.2004.83151815490831Open DOISearch in Google Scholar

Foster KR, Lukaski HC. Whole-body impedance--what does it measure? The American journal of clinical nutrition. Am Soc Nutrition; 1996;64(3):388S–396S.FosterKRLukaskiHCWhole-body impedance--what does it measure? The American journal of clinical nutritionAm Soc Nutrition;1996643388S39610.1093/ajcn/64.3.388S8780354Search in Google Scholar

Tanabe RF, de Azevedo ZMA, Fonseca VM, Peixoto MVM, Anjos dos LA, Gaspar-Elsas MIC, et al. Distribution of bioelectrical impedance vector values in multi-ethnic infants and pre-school children. Clinical Nutrition. Elsevier Ltd; 2012 Feb.1;31(1):144–8. http://dx.doi.org/10.1016/j.clnu.2011.08.006TanabeRFde AzevedoZMAFonsecaVMPeixotoMVMAnjosdos LAGaspar-ElsasMICet alDistribution of bioelectrical impedance vector values in multi-ethnic infants and pre-school childrenClinical Nutrition. Elsevier Ltd2012Feb.13111448http://dx.doi.org/10.1016/j.clnu.2011.08.00610.1016/j.clnu.2011.08.00621872371Search in Google Scholar

Fung YC. Biomechanics: Mechanical Properties of Living Tissues. Springer-Verlag; 1993.FungYCBiomechanics: Mechanical Properties of Living TissuesSpringer-Verlag;1993Search in Google Scholar

Demou ZN. Gene Expression Profiles in 3D Tumor Analogs Indicate Compressive Strain Differentially Enhances Metastatic Potential. Ann Biomed Eng. 2010 Jun. 18;38(11):3509–20. http://dx.doi.org/10.1007/s10439-010-0097-010.1007/s10439-010-0097-020559731DemouZNGene Expression Profiles in 3D Tumor Analogs Indicate Compressive Strain Differentially Enhances Metastatic PotentialAnn Biomed Eng2010Jun. 183811350920http://dx.doi.org/10.1007/s10439-010-0097-020559731Open DOISearch in Google Scholar

Ingber DE. Cellular mechanotransduction: putting all the pieces together again. The FASEB journal. FASEB; 2006;20(7):811–27. http://dx.doi.org/10.1096/fj.05-5424rev10.1096/fj.05-5424revIngberDECellular mechanotransduction: putting all the pieces together againThe FASEB journal. FASEB;200620781127http://dx.doi.org/10.1096/fj.05-5424rev16675838Open DOISearch in Google Scholar

Knezevich BA. Trauma nursing: principles and practice. Appleton-Century-Crofts; 1986.KnezevichBATrauma nursing: principles and practiceAppleton-Century-Crofts;1986Search in Google Scholar

Berry GP, Bamber JC, Mortimer PS, Bush NL, Miller NR, Barbone PE. The Spatio-Temporal Strain Response of Oedematous and Nonoedematous Tissue to Sustained Compression In Vivo. Ultrasound in Medicine & Biology. Elsevier; 2008;34(4):617–29.10.1016/j.ultrasmedbio.2007.10.007BerryGPBamberJCMortimerPSBushNLMillerNRBarbonePEThe Spatio-Temporal Strain Response of Oedematous and Nonoedematous Tissue to Sustained Compression In VivoUltrasound in Medicine & Biology. Elsevier;20083446172918222033Open DOISearch in Google Scholar

Dodde RE, Miller SF, Geiger JD, Shih AJ. Thermal-Electric Finite Element Analysis and Experimental Validation of Bipolar Electrosurgical Cautery. J. Manuf. Sci. Eng. 2008;130(2):021015. http://dx.doi.org/10.1115/1.290285810.1115/1.2902858DoddeREMillerSFGeigerJDShihAJThermal-Electric Finite Element Analysis and Experimental Validation of Bipolar Electrosurgical CauteryJ. Manuf. Sci. Eng20081302021015http://dx.doi.org/10.1115/1.2902858Open DOISearch in Google Scholar

Khanna A, Gougoulias N, Maffulli N. Intermittent pneumatic compression in fracture and soft-tissue injuries healing. British Medical Bulletin. 2008Dec.5;88(1):147–56. http://dx.doi.org/10.1093/bmb/ldn02410.1093/bmb/ldn02418596049KhannaAGougouliasNMaffulliNIntermittent pneumatic compression in fracture and soft-tissue injuries healingBritish Medical Bulletin2008Dec.588114756http://dx.doi.org/10.1093/bmb/ldn024Open DOISearch in Google Scholar

Rylander CG, Stumpp OF, Milner TE, Kemp NJ, Mendenhall JM, Diller KR, et al. Dehydration mechanism of optical clearing in tissue. J. Biomed. Opt. 2006;11(4):041117. http://dx.doi.org/10.1117/1.234320810.1117/1.234320816965145RylanderCGStumppOFMilnerTEKempNJMendenhallJMDillerKRet alDehydration mechanism of optical clearing in tissueJ. Biomed. Opt2006114041117http://dx.doi.org/10.1117/1.2343208Open DOISearch in Google Scholar

Keshtkar A. Design and construction of small sized pencil probe to measure bio-impedance. Medical Engineering & Physics. 2007 Nov.;29(9):1043–8. http://dx.doi.org/10.1016/j.medengphy.2006.10.0101711869110.1016/j.medengphy.2006.10.010KeshtkarADesign and construction of small sized pencil probe to measure bio-impedanceMedical Engineering & Physics200729910438http://dx.doi.org/10.1016/j.medengphy.2006.10.010Search in Google Scholar

Lepetit J, Culioli J. Mechanical properties of meat. Meat Science. Elsevier; 1994;36(1-2):203–37. http://dx.doi.org/10.1016/0309-1740(94)90042-610.1016/0309-1740(94)90042-6LepetitJCulioliJMechanical properties of meatMeat Science. Elsevier;1994361-220337http://dx.doi.org/10.1016/0309-1740(94)90042-6Open DOISearch in Google Scholar

Lepetit J, Sale P, Favier R, Dalle R. Electrical impedance and tenderisation in bovine meat. Meat Science. Elsevier; 2002;60(151–62. http://dx.doi.org/10.1016/S0309-1740(01)00104-810.1016/S0309-1740(01)00104-8LepetitJSalePFavierRDalleRElectrical impedance and tenderisation in bovine meatMeat Science. Elsevier;20026015162http://dx.doi.org/10.1016/S0309-1740(01)00104-8Open DOISearch in Google Scholar

Kahraman S, Alber M. Predicting the physico-mechanical properties of rocks from electrical impedance spectroscopy measurements. International Journal of Rock Mechanics and Mining Sciences. 2006 Jun.;43(4):543–53. http://dx.doi.org/10.1016/j.ijrmms.2005.09.01310.1016/j.ijrmms.2005.09.013KahramanSAlberMPredicting the physico-mechanical properties of rocks from electrical impedance spectroscopy measurementsInternational Journal of Rock Mechanics and Mining Sciences200643454353http://dx.doi.org/10.1016/j.ijrmms.2005.09.013Open DOISearch in Google Scholar

González-Correa CA, Brown BH, Smallwood RH, Walker DC, Bardhan KD. Electrical bioimpedance readings increase with higher pressure applied to the measuring probe. Physiol. Meas. 2005 Mar.30;26(2):S39–S47. http://dx.doi.org/10.1088/0967-3334/26/2/00410.1088/0967-3334/26/2/00415798245González-CorreaCABrownBHSmallwoodRHWalkerDCBardhanKDElectrical bioimpedance readings increase with higher pressure applied to the measuring probePhysiol. Meas2005Mar.30262S39S47http://dx.doi.org/10.1088/0967-3334/26/2/00415798245Open DOISearch in Google Scholar

Tsai JZ, Cao H, Tungjitkusolmun S, Woo EJ, Vorperian VR, Webster JG. Dependence of apparent resistance of four-electrode probes on insertion depth. IEEE Trans. Biomed. Eng. IEEE; 2000;47(1):41–8. http://dx.doi.org/10.1109/10.81761810.1109/10.817618TsaiJZCaoHTungjitkusolmunSWooEJVorperianVRWebsterJGDependence of apparent resistance of four-electrode probes on insertion depthIEEE Trans. Biomed. Eng. IEEE;2000471418http://dx.doi.org/10.1109/10.81761810646278Open DOISearch in Google Scholar

Keshtkar A, Keshtkar A. The effect of applied pressure on the electrical impedance of the bladder tissue using small and large probes. Journal of Medical Engineering & Technology. Informa UK Ltd UK; 2008;32(6):505–11.KeshtkarAKeshtkarAThe effect of applied pressure on the electrical impedance of the bladder tissue using small and large probesJournal of Medical Engineering & Technology. Informa UK Ltd UK;20083265051110.1080/0309190070150745619005965Search in Google Scholar

Keshtkar A, Keshtkar A. Probe pressure optimisation in bio-impedance spectroscopy. International Journal of Medical Engineering and Informatics. Inderscience; 2011;3(1):78–83.10.1504/IJMEI.2011.039078KeshtkarAKeshtkarAProbe pressure optimisation in bio-impedance spectroscopyInternational Journal of Medical Engineering and Informatics. Inderscience;2011317883Open DOISearch in Google Scholar

Dodde RE, Bull JL, Shih AJ. Bioimpedance of soft tissue under compression. Physiol. Meas. 2012 May 24;33(6):1095–109. http://dx.doi.org/10.1088/0967-3334/33/6/109510.1088/0967-3334/33/6/109522621935DoddeREBullJLShihAJBioimpedance of soft tissue under compressionPhysiol. Meas2012May 243361095109http://dx.doi.org/10.1088/0967-3334/33/6/109522621935Open DOISearch in Google Scholar

Righetti R, Ophir J, Srinivasan S, Krouskop TA. The feasibility of using elastography for imaging the Poisson's ratio in porous media. Ultrasound in Medicine & Biology. 2004 Feb.;30(2):215–28. http://dx.doi.org/10.1016/j.ultrasmedbio.2003.10.0221499867410.1016/j.ultrasmedbio.2003.10.022RighettiROphirJSrinivasanSKrouskopTAThe feasibility of using elastography for imaging the Poisson's ratio in porous mediaUltrasound in Medicine & Biology200430221528http://dx.doi.org/10.1016/j.ultrasmedbio.2003.10.02214998674Search in Google Scholar

Kim YT, Kim HC, Inada-Kim M, Jung SS, Yun YH, Jho MJ, et al. Evaluation of Tissue Mimicking Quality of Tofu for Biomedical Ultrasound. UMB. World Federation for Ultrasound in Medicine & Biology; 2009 Mar.1;35(3):472–81. http://dx.doi.org/10.1016/j.ultrasmedbio.2008.09.00510.1016/j.ultrasmedbio.2008.09.005KimYTKimHCInada-KimMJungSSYunYHJhoMJet alEvaluation of Tissue Mimicking Quality of Tofu for Biomedical UltrasoundUMB. World Federation for Ultrasound in Medicine & Biology;2009Mar.135347281http://dx.doi.org/10.1016/j.ultrasmedbio.2008.09.00519101073Open DOISearch in Google Scholar

Aguilera JM, Stanley DW. Microstructural principles of food processing and engineering. Springer; 1999.AguileraJMStanleyDWMicrostructural principles of food processing and engineeringSpringer;1999Search in Google Scholar

Li X, Toyoda K, Ihara I. Coagulation process of soymilk characterized by electrical impedance spectroscopy. Journal of Food Engineering. Elsevier Ltd; 2011 Aug. 1;105(3):563–8. http://dx.doi.org/10.1016/j.jfoodeng.2011.03.023LiXToyodaKIharaICoagulation process of soymilk characterized by electrical impedance spectroscopyJournal of Food Engineering. Elsevier Ltd;2011Aug. 110535638http://dx.doi.org/10.1016/j.jfoodeng.2011.03.02310.1016/j.jfoodeng.2011.03.023Search in Google Scholar

Li XS, Toyoda K. Monitoring of the coagulation process of soymilk by an integrated electrical sensing and control system. Mathematical and Computer Modelling. Elsevier Ltd; 2011 Dec.2;:1–8.LiXSToyodaKMonitoring of the coagulation process of soymilk by an integrated electrical sensing and control systemMathematical and Computer Modelling. Elsevier Ltd;2011Dec. 21810.1016/j.mcm.2011.11.001Search in Google Scholar

Wu J. Tofu as a tissue-mimicking material. UMB. Elsevier; 2001;27(9):1297–300.WuJTofu as a tissue-mimicking materialUMB. Elsevier20012791297300Search in Google Scholar

Christensen RM. Theory of viscoelasticity. Dover Publications; 2010.ChristensenRMTheory of viscoelasticityDover Publications;201010.1115/1.3408900Search in Google Scholar

Stogryn A. Equations for calculating the dielectric constant of saline water (Correspondence). Microwave Theory and Techniques, IEEE Transactions on. IEEE; 1971;19(8):733–6.10.1109/TMTT.1971.1127617StogrynAEquations for calculating the dielectric constant of saline water (Correspondence)Microwave Theory and Techniques, IEEE Transactions on. IEEE;19711987336Open DOISearch in Google Scholar

Li X, Toyoda K. Monitoring of coagulation process of soymilk by an integrated electrical sensing and control system. Mathematical and Computer Modelling. Elsevier; 2011.LiXToyodaKMonitoring of coagulation process of soymilk by an integrated electrical sensing and control systemMathematical and Computer Modelling. Elsevier;201110.1016/j.mcm.2011.11.001Search in Google Scholar

Dodde R. Bioimpedance of soft tissue under compression and applications to electrosurgery. PhD Thesis. University of Michigan, USA, 2012.DoddeRBioimpedance of soft tissue under compression and applications to electrosurgeryPhD ThesisUniversity of MichiganUSA201210.1088/0967-3334/33/6/1095Search in Google Scholar

Brown B, Wilson A, Bertemes-Filho P. Bipolar and tetrapolar transfer impedance measurements from volume conductor. Electronics Letters. IET; 2000;36(25):2060–2.10.1049/el:20001439BrownBWilsonABertemes-FilhoPBipolar and tetrapolar transfer impedance measurements from volume conductorElectronics Letters. IET2000362520602Open DOISearch in Google Scholar

Grimnes S, Martinsen ØG. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. J. Phys. D: Appl. Phys. 2006 Dec.15;40(1):9–14. http://dx.doi.org/10.1088/0022-3727/40/1/S02GrimnesSMartinsenØGSources of error in tetrapolar impedance measurements on biomaterials and other ionic conductorsJ. Phys. D: Appl. Phys2006Dec.15401914http://dx.doi.org/10.1088/0022-3727/40/1/S0210.1088/0022-3727/40/1/S02Search in Google Scholar

Scharfetter H, Hartinger P, Hinghofer-Szalkay H, Hutten H. A model of artefacts produced by stray capacitance during whole body or segmental bioimpedance spectroscopy. Physiol. Meas. IOP Publishing; 1998;19:247. http://dx.doi.org/10.1088/0967-3334/19/2/01210.1088/0967-3334/19/2/012ScharfetterHHartingerPHinghofer-SzalkayHHuttenHA model of artefacts produced by stray capacitance during whole body or segmental bioimpedance spectroscopyPhysiol. Meas. IOP Publishing;199819247http://dx.doi.org/10.1088/0967-3334/19/2/0129626689Open DOISearch in Google Scholar

Bolton M, Ward L, Khan A, Campbell I, Nightingale P, Dewit O, et al. Sources of error in bioimpedance spectroscopy. Physiol. Meas. IOP Publishing; 1998;19:235. http://dx.doi.org/10.1088/0967-3334/19/2/01110.1088/0967-3334/19/2/011BoltonMWardLKhanACampbellINightingalePDewitOet alSources of error in bioimpedance spectroscopyPhysiol. Meas. IOP Publishing199819235http://dx.doi.org/10.1088/0967-3334/19/2/0119626688Open DOISearch in Google Scholar

McEwan A, Cusick G, Holder DS. A review of errors in multi-frequency EIT instrumentation. Physiol. Meas. 2007 Jun.26;28(7):S197–S215. http://dx.doi.org/10.1088/0967-3334/28/7/S151766463610.1088/0967-3334/28/7/S15McEwanACusickGHolderDSA review of errors in multi-frequency EIT instrumentationPhysiol. Meas2007Jun.26287S197S215http://dx.doi.org/10.1088/0967-3334/28/7/S1517664636Search in Google Scholar

Buendia R, Seoane F, Gil-Pita R. A novel approach for removing the hook effect artefact from Electrical Bioimpedance spectroscopy measurements. J. Phys.: Conf. Ser. 2010 May19;224:012126.BuendiaRSeoaneFGil-PitaRA novel approach for removing the hook effect artefact from Electrical Bioimpedance spectroscopy measurementsJ. Phys.: Conf. Ser201022401212610.1088/1742-6596/224/1/012126Search in Google Scholar

Buendia R, Seoane F, Gil-Pita R. Experimental validation of a method for removing the capacitive leakage artifact from electrical bioimpedance spectroscopy measurements. Meas. Sci. Technol. 2010 Oct.6;21(11):115802. http://dx.doi.org/10.1088/0957-0233/21/11/11580210.1088/0957-0233/21/11/115802BuendiaRSeoaneFGil-PitaRExperimental validation of a method for removing the capacitive leakage artifact from electrical bioimpedance spectroscopy measurementsMeas. Sci. Technol2010Oct.62111115802http://dx.doi.org/10.1088/0957-0233/21/11/115802Open DOISearch in Google Scholar

Abramowitch SD, Woo SLY. An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory. J. Biomech. Eng. 2004;126(1):92. http://dx.doi.org/10.1115/1.16455281517113410.1115/1.1645528AbramowitchSDWooSLYAn Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic TheoryJ. Biomech. Eng2004126192http://dx.doi.org/10.1115/1.164552815171134Search in Google Scholar