Open Access

An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance


Cite

Chua LO. Memristor - The missing circuit element. IEEE Trans. Circuit Theory. 1971;18;507-19. http://dx.doi.org/10.1109/TCT.1971.1083337ChuaLOMemristor - The missing circuit elementIEEE Trans. Circuit Theory19711818507http://dx.doi.org/10.1109/TCT.1971.108333710.1109/TCT.1971.1083337Search in Google Scholar

Strukov DB, Snider GB, Stewart DR, Williams RS. The missing memristor found. Nature. 2008; 453, 80-84. http://dx.doi.org/10.1038/nature0693218451858StrukovDBSniderGBStewartDRWilliamsRSThe missing memristor foundNature20084538084http://dx.doi.org/10.1038/nature0693210.1038/nature0693218451858Search in Google Scholar

Tour JM, He T. The fourth element. Nature. 2008;453;42-43. http://dx.doi.org/10.1038/453042aTourJMHeTThe fourth elementNature200845345342http://dx.doi.org/10.1038/453042a10.1038/453042a18451847Search in Google Scholar

Lütken CA, The missing link in circuit theory. In: Martinsen ØG, Jensen Ø, An anthology of developments in clinical engineering and bioimpedance. Oslo: Unipub; 2009. p. 177-90.LütkenCAThe missing link in circuit theoryMartinsenØGJensenØAn anthology of developments in clinical engineering and bioimpedanceOsloUnipub200917790Search in Google Scholar

Chua LO. Introduction to nonlinear network theory. 1st Ed. New York: McGraw-Hill; 1969.ChuaLOIntroduction to nonlinear network theory1st Ed. New York: McGraw-Hill1969Search in Google Scholar

Chua LO, Kang SM. Memristive devices and systems. Proc IEEE. 1976;64;209-23. http://dx.doi.org/10.1109/PROC.1976.10092ChuaLOKangSMMemristive devices systemsProc IEEE19766464209http://dx.doi.org/10.1109/PROC.1976.1009210.1109/PROC.1976.10092Search in Google Scholar

Williams RS. How we found the missing memristor. IEEE Spectrum. 2008;45;28-35. http://dx.doi.org/10.1109/MSPEC.2008.4687366WilliamsRSHow we found the missing memristorIEEE Spectrum2008454528http://dx.doi.org/10.1109/MSPEC.2008.468736610.1007/978-1-4614-9068-5_1Search in Google Scholar

Grimnes S, Lütken CA, Martinsen ØG. Memristive properties of electro osmosis in human sweat ducts. WC2009, IFMBE Proceedings. 2009; 25/VII, 696-698. http://dx.doi.org/10.1007/978-3-642-03885-3_193GrimnesSLütkenCAMartinsenØGMemristive properties of electro osmosis in human sweat ductsWC2009, IFMBE Proceedings200925VII696698http://dx.doi.org/10.1007/978-3-642-03885-3_19310.1007/978-3-642-03885-3_193Search in Google Scholar

Johnsen GK, Lütken CA, Martinsen ØG, Grimnes S. Memristive model of electro-osmosis in skin. Phys Rev E. 2011;83;031916. http://dx.doi.org/10.1103/PhysRevE.83.031916JohnsenGKLütkenCAMartinsenØGGrimnesSMemristive model of electro-osmosis in skinPhys Rev E20118383031916http://dx.doi.org/10.1103/PhysRevE.83.03191610.1103/PhysRevE.83.03191621517534Search in Google Scholar

Pershin YV, Di Ventra M. Memory effects in complex materials and nanoscale systems. Advances in Physics. 2011;60(2);145-227. http://dx.doi.org/10.1080/00018732.2010.54496110.1080/00018732.2010.544961PershinYVDi VentraMMemory effects in complex materials and nanoscale systemsAdvances in Physics2011602145227http://dx.doi.org/10.1080/00018732.2010.544961Open DOISearch in Google Scholar

Chua LO, Nonlinear circuit foundations for nanodevices, Part 1: The four-dimensional torus. Proc IEEE. 2003; 91(11);183059. http://dx.doi.org/10.1109/JPROC.2003.818319ChuaLONonlinear circuit foundations for nanodevices, Part 1: The four-dimensional torusProc IEEE20039111183059http://dx.doi.org/10.1109/JPROC.2003.81831910.1109/JPROC.2003.818319Search in Google Scholar

Yoglekar YN, Wolf SJ. The elusive memristor: properties of basic electric circuits. Eur J Phys. 2009;30;661-75. http://dx.doi.org/10.1088/0143-0807/30/4/001YoglekarYNWolfSJThe elusive memristor: properties of basic electric circuitsEur J Phys20093030661http://dx.doi.org/10.1088/0143-0807/30/4/00110.1088/0143-0807/30/4/001Search in Google Scholar

Cole KS. Rectification and inductance in the squid giant axion. J Gen Physiol. 1941;25;29-51 http://dx.doi.org/10.1085/jgp.25.1.2910.1085/jgp.25.1.29ColeKSRectification and inductance in the squid giant axionJ Gen Physiol1941252951http://dx.doi.org/10.1085/jgp.25.1.29Open DOISearch in Google Scholar

Cole KS, Membranes, ions, and impulses. University of California Press; Berkeley; 1972.ColeKSMembranes, ions, and impulsesUniversity of California PressBerkeley1972Search in Google Scholar

Mauro A. Anomalous impedance, a phenomenological property of time-variant resistance – an analytic review. Biophys J. 1961;1;353-72. http://dx.doi.org/10.1016/S0006-3495(61)86894-XMauroAAnomalous impedance, a phenomenological property of time-variant resistance – an analytic reviewBiophys J196111353http://dx.doi.org/10.1016/S0006-3495(61)86894-X10.1016/S0006-3495(61)86894-XSearch in Google Scholar

http://www.newscientist.com/article/mg20928024.500-sweat-ducts-make-skin-a-memristor.htmlhttp://www.newscientist.com/article/mg20928024.500-sweat-ducts-make-skin-a-memristor.htmlSearch in Google Scholar

Chua LO, Memristors: A new nanoscale CNN cell. In: Baatar C, et al, editors. Cellular nanoscale sensory wave computing. Boston: Springer; 2010. p. 87-115. http://dx.doi.org/10.1007/978-1-4419-1011-0_4ChuaLOMemristors: A new nanoscale CNN cellBaatarCet al, editorsCellular nanoscale sensory wave computingBostonSpringer201087115http://dx.doi.org/10.1007/978-1-4419-1011-0_410.1007/978-1-4419-1011-0_4Search in Google Scholar

Grimnes S, Martinsen ØG. Bioimpedance and bioelectricity basics. Academic Press; 2008.GrimnesSMartinsenØGBioimpedance and bioelectricity basicsAcademic Press200810.1016/B978-0-12-374004-5.00010-6Search in Google Scholar

Malmviou J, Plonsey R. Bioelectromagnetism. Oxford University Press; 1995.MalmviouJPlonseyRBioelectromagnetismOxford University Press1995Search in Google Scholar

Grimnes S. Skin impedance and electro-osmosis in the human epidermis. Med Biol Eng Comp. 1983;21;739-49. http://dx.doi.org/10.1007/BF02464037GrimnesSSkin impedance and electro-osmosis in the human epidermisMed Biol Eng Comp19832121739http://dx.doi.org/10.1007/BF0246403710.1007/BF024640376664134Search in Google Scholar

Licht TS, Stern M, Shwachman H. Measurement of the electrical conductivity of sweat. Clin Chem. 1957;3; 37–48.13404762LichtTSSternMShwachmanHMeasurement of the electrical conductivity of sweatClin Chem1957337–4810.1093/clinchem/3.1.37Search in Google Scholar

Grimnes S, Psychogalvanic reflex and changes in electrical parameters of dry skin. Med Biol Eng Comp1982; 20;734-40. http://dx.doi.org/10.1007/BF02442528GrimnesSPsychogalvanic reflex and changes in electrical parameters of dry skinMed Biol Eng Comp19822073440http://dx.doi.org/10.1007/BF0244252810.1007/BF024425287169817Search in Google Scholar

Tronstad C, Johnsen GK, Grimnes S, Martinsen ØG. A study on electrode gels for skin conductance measurements. Physiol Meas. 2010;31;1395-1410. http://dx.doi.org/10.1088/0967-3334/31/10/008TronstadCJohnsenGKGrimnesSMartinsenØGA study on electrode gels for skin conductance measurementsPhysiol Meas201031311395http://dx.doi.org/10.1088/0967-3334/31/10/00810.1088/0967-3334/31/10/00820811086Search in Google Scholar

Martinsen ØG, Grimnes S, Karlsen J. Low frequency dielectric dispersion of microporous membranes in electrolyte solution. J Coll Interf Sci. 1998;199;107-10. http://dx.doi.org/10.1006/jcis.1997.5331MartinsenØGGrimnesSKarlsenJLow frequency dielectric dispersion of microporous membranes in electrolyte solutionJ Coll Interf Sci1998199199107http://dx.doi.org/10.1006/jcis.1997.533110.1006/jcis.1997.5331Search in Google Scholar

Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction in nerve. J Phys. 1952;117;500-44.HodgkinALHuxleyAFA quantitative description of membrane current and its application to conduction in nerveJ Phys19521175004410.1113/jphysiol.1952.sp004764139241312991237Search in Google Scholar

Johnston D, Wu SM-S, Biophysics of computation. Oxford; New York; 1994.JohnstonDWuSM-SBiophysics of computationOxfordNew York1994Search in Google Scholar

Dayan P, Abbott LF. Theoretical neuroscience. MIT Press; Cambridge; 2001.DayanPAbbottLFTheoretical neuroscienceMIT PressCambridge2001Search in Google Scholar

Einevoll G. Mathematical modeling of neural activity. In: A. Skjeltorp, editor. Dynamics of Complex Interconnected Systems: Networks and Bioprocesses. NATO Science Series II: Mathematics, Physics and Chemistry. Kluwer Academic; 2006. http://dx.doi.org/10.1007/1-4020-5030-5_8EinevollGMathematical modeling of neural activitySkjeltorpA.editorDynamics of Complex Interconnected Systems: Networks and Bioprocesses. NATO Science Series II: Mathematics, Physics and ChemistryKluwer Academic2006http://dx.doi.org/10.1007/1-4020-5030-5_810.1007/1-4020-5030-5_8Search in Google Scholar

Pershin YV, Di Ventra M. Experimental demonstration of associative memory with memristive neural networks. Neural Networks 2010;23;881-6. http://dx.doi.org/10.1016/j.neunet.2010.05.001PershinYVDi VentraMExperimental demonstration of associative memory with memristive neural networksNeural Networks20102323881http://dx.doi.org/10.1016/j.neunet.2010.05.00110.1016/j.neunet.2010.05.00120605401Search in Google Scholar

Bliss T, Collingridge G, Morris R. LTP – Long term Potenlication. Oxford; New York; 2003.BlissTCollingridgeGMorrisRLTP – Long term PotenlicationOxfordNew York2003Search in Google Scholar

Kandel ER. In search of memory. Norton; New York; 2006.KandelERIn search of memoryNortonNew York2006Search in Google Scholar

Di Ventra M, Pershin YV, Chua LO. Circuit elements with memory : Memristors, memcapacitors, and meminductors. Proc IEEE. 2009;97;17-17-24.Di VentraMPershinYVChuaLOCircuit elements with memory : Memristors, memcapacitors, and meminductorsProc IEEE20099717-17-2410.1109/JPROC.2009.2021077Search in Google Scholar

Krems M, Pershin YV, Di Ventra M. Ionic memcapacitive effects in nanopores. Nano Lett. 2011;10;264-78.KremsMPershinYVDi VentraMIonic memcapacitive effects in nanoporesNano Lett2011102647810.1021/nl1014734292119120583820Search in Google Scholar

Prodromakis T, Toumazou C, Chua L. Two centuries of memristors. Nature Materials. 2012; 11;478-81. http://dx.doi.org/10.1038/nmat33382261450410.1038/nmat3338ProdromakisTToumazouCChuaLTwo centuries of memristorsNature Materials20121147881http://dx.doi.org/10.1038/nmat333822614504Search in Google Scholar

Kavehei O, Iqbal A, Kim YS, Eshragian K, Al-Sarawi SF, Abbott D. The fourth element: characteristics, modelling and electromagnetic theory of the memristor. Proc Royal Soc A – Mathem Phys Eng Sci. 2010;466;2175-2202.10.1098/rspa.2009.0553KaveheiOIqbalAKimYSEshragianKAl-SarawiSFAbbottDThe fourth element: characteristics, modelling and electromagnetic theory of the memristorProc Royal Soc A – Mathem Phys Eng Sci201046621752202Open DOISearch in Google Scholar