Open Access

Description of corrections on electrode polarization impedance using isopotential interface factor


Cite

Davey CL, Davey HM, Kell DB. On the Dielectric Properties of Cell Suspensions at High Volume Fractions. Bioelectrochemistry and Bioenergetics. 1992;28:319-340. http://dx.doi.org/10.1016/0302-4598(92)80023-A10.1016/0302-4598(92)80023-ADaveyCLDaveyHMKellDBOn the Dielectric Properties of Cell Suspensions at High Volume FractionsBioelectrochemistry and Bioenergetics199228319340http://dx.doi.org/10.1016/0302-4598(92)80023-AOpen DOISearch in Google Scholar

Coster HGL, Chilcott TC, Coster ACF. Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectrochemistry and Bioenergetics. 1996;40:79-98. http://dx.doi.org/10.1016/0302-4598(96)05064-710.1016/0302-4598(96)05064-7CosterHGLChilcottTCCosterACFImpedance spectroscopy of interfaces, membranes and ultrastructuresBioelectrochemistry and Bioenergetics1996407998http://dx.doi.org/10.1016/0302-4598(96)05064-7Open DOISearch in Google Scholar

Bordi F, Cametti C, Colby RH. Dielectric spectroscopy and conductivity of polyelectrolyte solutions. J. Phys: Condens. Matter. 2004;16:R1423-R1463. http://dx.doi.org/10.1088/0953-8984/16/49/R01BordiFCamettiCColbyRHDielectric spectroscopy and conductivity of polyelectrolyte solutionsJ. Phys: Condens. Matter200416R1423R1463http://dx.doi.org/10.1088/0953-8984/16/49/R0110.1088/0953-8984/16/49/R01Search in Google Scholar

Felice CJ, Monitor Digital de Microorganismos: Aspectos Teóricos y Tecnológicos [PhD Dissertation]. Universidad Nacional de Tucumán, San Miguel de Tucumán. 1999.FeliceCJMonitor Digital de Microorganismos: Aspectos Teóricos y Tecnológicos [PhD Dissertation]Universidad Nacional de TucumánSan Miguel de Tucumán1999Search in Google Scholar

Geddes LA. Who Introduced the Tetrapolar Method for Measuring Resistance and Impedance? IEEE Engineering in Medicine and Biology Magazine. 1996;15:133-134. http://dx.doi.org/10.1109/51.53707010.1109/51.537070GeddesLAWho Introduced the Tetrapolar Method for Measuring Resistance and Impedance?IEEE Engineering in Medicine and Biology Magazine199615133134http://dx.doi.org/10.1109/51.537070Open DOISearch in Google Scholar

Prodan C, Mayo F, Claycomb JR, Miller JH, Benedik MJ. Low-frequency, low-field dielectric spectroscopy of living cell suspensions. J. Appl. Phys. 2004;95:3754-3756. http://dx.doi.org/10.1063/1.164945510.1063/1.1649455ProdanCMayoFClaycombJRMillerJHBenedikMJLow-frequency, low-field dielectric spectroscopy of living cell suspensionsJ. Appl. Phys20049537543756http://dx.doi.org/10.1063/1.1649455Open DOISearch in Google Scholar

Schwan HP, Ferris CD. Four-Electrode Null Tecniques for impedance Measurement with High Resolution. The Review of Scientific Instruments. 1968;39:481-485. http://dx.doi.org/10.1063/1.168341310.1063/1.1683413SchwanHPFerrisCDFour-Electrode Null Tecniques for impedance Measurement with High ResolutionThe Review of Scientific Instruments196839481485http://dx.doi.org/10.1063/1.1683413Open DOISearch in Google Scholar

Brown BH, Smallwood RH, Barber DC, Lawfoed PV, Rose DR. Medical Physics and Biomedical Engineering. IOP Plublishing, London, 1999 http://dx.doi.org/10.1887/0750303689BrownBHSmallwoodRHBarberDCLawfoedPVRoseDRMedical Physics and Biomedical EngineeringIOP PlublishingLondon1999http://dx.doi.org/10.1887/075030368910.1887/0750303689Search in Google Scholar

Cornish BH, Jacobs A, Thomas BJ, Ward LC. Optimizing electrode sites for segmental bioimpedance measurements. Physiol. Meas. 1999;20:241-250. http://dx.doi.org/10.1088/0967-3334/20/3/3021047557810.1088/0967-3334/20/3/302CornishBHJacobsAThomasBJWardLCOptimizing electrode sites for segmental bioimpedance measurementsPhysiol. Meas199920241250http://dx.doi.org/10.1088/0967-3334/20/3/30210475578Search in Google Scholar

Scharfetter H, Structural Modeling for Impedance-Based Non-Invasive Diagnostic Methods [PhD Dissertation]. Faculty of Electrical Engineering, Technical University Graz, Graz, 1999ScharfetterHStructural Modeling for Impedance-Based Non-Invasive Diagnostic Methods [PhD Dissertation]Faculty of Electrical EngineeringTechnical University GrazGraz1999Search in Google Scholar

Kim SG, Sung PY, Han J, Suk WN, Tae HL, Oh IH, Hong, SA. A study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cells. Electrochimica Acta. 2004;49:3081–3089 http://dx.doi.org/10.1016/j.electacta.2004.01.02710.1016/j.electacta.2004.01.027KimSGSungPYHanJSukWNTaeHLOhIHHongSAA study on the chemical stability and electrode performance of modified NiO cathodes for molten carbonate fuel cellsElectrochimica Acta20044930813089http://dx.doi.org/10.1016/j.electacta.2004.01.027Open DOISearch in Google Scholar

Kybert J, Hansgent H, Pliquetti F. Dielectric properties of biological tissue at low temperatures demonstrated on fatty tissue. Phys. Med. Biol.1992;37:1675-1688 http://dx.doi.org/10.1088/0031-9155/37/8/004151890710.1088/0031-9155/37/8/004KybertJHansgentHPliquettiFDielectric properties of biological tissue at low temperatures demonstrated on fatty tissuePhys. Med. Biol19923716751688http://dx.doi.org/10.1088/0031-9155/37/8/0041518907Search in Google Scholar

Baysal U, Eyüboglu BM. Tissue resistivity estimation in the presence of positional and geometrical uncertainties. Phys. Med. Biol. 2000;45:2373-2388 http://dx.doi.org/10.1088/0031-9155/45/8/32210.1088/0031-9155/45/8/32210958201BaysalUEyübogluBMTissue resistivity estimation in the presence of positional and geometrical uncertaintiesPhys. Med. Biol20004523732388http://dx.doi.org/10.1088/0031-9155/45/8/322Open DOISearch in Google Scholar

Grimnes S, Martinsen OG. Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors. J. Phys. D: Appl. Phys. 2007;40:9–14 http://dx.doi.org/10.1088/0022-3727/40/1/S0210.1088/0022-3727/40/1/S02GrimnesSMartinsenOGSources of error in tetrapolar impedance measurements on biomaterials and other ionic conductorsJ. Phys. D: Appl. Phys200740914http://dx.doi.org/10.1088/0022-3727/40/1/S02Open DOISearch in Google Scholar

Brown BH, Tidy JA, Boston K, Blackett AD, Smallwood RH, Sharp F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. The Lancet. 2000;355:892-895 http://dx.doi.org/10.1016/S0140-6736(99)09095-910.1016/S0140-6736(99)09095-9BrownBHTidyJABostonKBlackettADSmallwoodRHSharpFRelation between tissue structure and imposed electrical current flow in cervical neoplasiaThe Lancet2000355892895http://dx.doi.org/10.1016/S0140-6736(99)09095-9Open DOISearch in Google Scholar

González-Correa CA, Brown BH, Smallwood RH, Kalia N, Stoddard CJ, Stephenson TJ, Haggie SJ, Slater DN, Bradman KD. Virtual biopsies in Barret’s esophagous using impedance probe. Ann. NY Acad. Sci. 1999;873: 313-321 http://dx.doi.org/10.1111/j.1749-6632.1999.tb09479.x10.1111/j.1749-6632.1999.tb09479.xGonzález-CorreaCABrownBHSmallwoodRHKaliaNStoddardCJStephensonTJHaggieSJSlaterDNBradmanKDVirtual biopsies in Barret’s esophagous using impedance probeAnn. NY Acad. Sci1999873313321http://dx.doi.org/10.1111/j.1749-6632.1999.tb09479.x10372179Open DOISearch in Google Scholar

Less A, Shenstone Richards JC, Jason AC. Methods and apparatus for determining the condition of food. US Patent No. 3665302, 1972LessAShenstone RichardsJCJasonACMethods and apparatus for determining the condition of foodUS Patent No. 36653021972Search in Google Scholar

Kislov AV, Novikov IA, Petrovych SV, Khomyakov ON. Biological signal sensor and device for recording biological signals incorporating the said sensor. US Patent No. 6.996.428, 2006KislovAVNovikovIAPetrovychSVKhomyakovONBiological signal sensor and device for recording biological signals incorporating the said sensorUS Patent No. 6.996.4282006Search in Google Scholar

Foster KR, Schwan HP. Dielectric Properties of Tissues and Biological Materials, A Critical Review. Critical Reviews in Biomedical Engineering. 1989;17:25-1042651001FosterKRSchwanHPDielectric Properties of Tissues and Biological Materials, A Critical ReviewCritical Reviews in Biomedical Engineering19891725104Search in Google Scholar

Jontes JD. Theories of muscle contraction, Journal of Structure Biology. 1985;115:119-143 http://dx.doi.org/10.1006/jsbi.1995.1037JontesJDTheories of muscle contractionJournal of Structure Biology1985115119143http://dx.doi.org/10.1006/jsbi.1995.103710.1006/jsbi.1995.10377577233Search in Google Scholar

Brosseau C. Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective. J. Phys. D: Appl. Phys. 2006;39:1277–1294 http://dx.doi.org/10.1088/0022-3727/39/7/S0210.1088/0022-3727/39/7/S02BrosseauCModelling and simulation of dielectric heterostructures: a physical survey from an historical perspectiveJ. Phys. D: Appl. Phys20063912771294http://dx.doi.org/10.1088/0022-3727/39/7/S02Open DOISearch in Google Scholar

Simeonova M, Gimsa J. Dielectric anisotropy, volume potential anomalies and the persistent Maxwellian equivalent body, J. Phys.: Condens. Matter. 2005;17:7817–7831 http://dx.doi.org/10.1088/0953-8984/17/50/004SimeonovaMGimsaJDielectric anisotropy, volume potential anomalies and the persistent Maxwellian equivalent bodyJ. Phys.: Condens. Matter20051778177831http://dx.doi.org/10.1088/0953-8984/17/50/00410.1088/0953-8984/17/50/004Search in Google Scholar

Gómez-Sánchez JA, Felice CJ. Determination of bidirectional electric anisotropy of muscles ex vivo using three electrode configurations. IFMBE Proceedings WC 2009 World Congress on Medical Physics and Biomedical Engineering 25, 2009Gómez-SánchezJAFeliceCJDetermination of bidirectional electric anisotropy of muscles ex vivo using three electrode configurationsIFMBE Proceedings WC 2009 World Congress on Medical Physics and Biomedical Engineering25200910.1007/978-3-642-03885-3_222Search in Google Scholar

Steendijk P, Mur G, Van der Velde ET, Baan J. The four electrode resistivity technique in anisotropic media: Theorical analysis and application on myocardial tissue in vivo. IEEE Transations on Biomedical Engineering. 1993; 40:1138-1148 http://dx.doi.org/10.1109/10.24563210.1109/10.245632SteendijkPMurGVander Velde ETBaanJThe four electrode resistivity technique in anisotropic media: Theorical analysis and application on myocardial tissue in vivoIEEE Transations on Biomedical Engineering19934011381148http://dx.doi.org/10.1109/10.2456328307598Open DOISearch in Google Scholar

Zhao X, Kinouchi Y, Iritani T, Morimoto T, Takeuchi M. Estimation of Multi-Layer Tissue Conductivities from Non-Invasive Measured Bioresistances Using Divided Electrodes. IEICE Trans. Inf. & Syst. 2002;E85-D:1031-1038ZhaoXKinouchiYIritaniTMorimotoTTakeuchiMEstimation of Multi-Layer Tissue Conductivities from Non-Invasive Measured Bioresistances Using Divided ElectrodesIEICE Trans. Inf. & Syst2002E85-D10311038Search in Google Scholar

Gómez-Sánchez JA, Aristizábal Botero W, Barragán Arango PJ, Felice CJ. Introduction of a muscular bidirectional electrical anisotropy index to quantify the structural modifications during aging in raw meat. Measurement Science and Technology. 2009;20Gómez-SánchezJAAristizábal BoteroWBarragánArango PJFeliceCJIntroduction of a muscular bidirectional electrical anisotropy index to quantify the structural modifications during aging in raw meatMeasurement Science and Technology20092010.1088/0957-0233/20/7/075702Search in Google Scholar

Chawla N, Chawla KK. Metal matrix composites. Springer Science + Business Media Inc, New York, 2006.ChawlaNChawlaKKMetal matrix compositesSpringer Science + Business Media IncNew York200610.1002/9783527603978.mst0150Search in Google Scholar

Grimnes S, Martinsen OG. Bioimpedance and Bioelectricity Basics. Second Edition, Elsevier, Oxford, 2008GrimnesSMartinsenOGBioimpedance and Bioelectricity BasicsSecond EditionElsevier, Oxford200810.1016/B978-0-12-374004-5.00010-6Search in Google Scholar

Geddes LA, Foster KS, Reilly J, Voorhees WD, Bourland JD, Ragheb T, Fearnot NE. The rectification properties of an electrode-electrolyte interface operated at high sinusoidal current density. IEEE Transactions on Biomedical Engineering. 1987;34:669-672 http://dx.doi.org/10.1109/TBME.1987.325991GeddesLAFosterKSReillyJVoorheesWDBourlandJDRaghebTFearnotNEThe rectification properties of an electrode-electrolyte interface operated at high sinusoidal current densityIEEE Transactions on Biomedical Engineering198734669672http://dx.doi.org/10.1109/TBME.1987.32599110.1109/TBME.1987.325991Search in Google Scholar

Ruiz GA, Felice CJ, Valentinuzzi ME. Non-linear response of electrode–electrolyte interface at high current density. Chaos, Solutions and Fractals. 2005;25:649–654 http://dx.doi.org/10.1016/j.chaos.2004.11.02910.1016/j.chaos.2004.11.029RuizGAFeliceCJValentinuzziMENon-linear response of electrode–electrolyte interface at high current densityChaos, Solutions and Fractals200525649654http://dx.doi.org/10.1016/j.chaos.2004.11.029Open DOISearch in Google Scholar

Høyum P, Kalvøy H, Martinsen OG, Grimnes S. A finite element model of needle electrode spatial sensitivity. Physiol. Meas. 2010;31:1369–1379 http://dx.doi.org/10.1088/0967-3334/31/10/00610.1088/0967-3334/31/10/00620736490HøyumPKalvøyHMartinsenOGGrimnesSA finite element model of needle electrode spatial sensitivityPhysiol. Meas20103113691379http://dx.doi.org/10.1088/0967-3334/31/10/006Open DOISearch in Google Scholar

Pajkossy T. Impedance spectroscopy at interfaces of metals and aqueous solutions — Surface roughness, CPE and related issues. Solid State Ionics. 2005;176:1997–2003 http://dx.doi.org/10.1016/j.ssi.2004.06.02310.1016/j.ssi.2004.06.023PajkossyTImpedance spectroscopy at interfaces of metals and aqueous solutions — Surface roughness, CPE and related issuesSolid State Ionics200517619972003http://dx.doi.org/10.1016/j.ssi.2004.06.023Open DOISearch in Google Scholar

Feldman Y, Nigmatullin R, Polygalov E, Texter J. Fractal-polarization correction in time domain dielectric spectroscopy. Physical Review E. 1998;58:7561-7565 http://dx.doi.org/10.1103/PhysRevE.58.756110.1103/PhysRevE.58.7561FeldmanYNigmatullinRPolygalovETexterJFractal-polarization correction in time domain dielectric spectroscopyPhysical Review E19985875617565http://dx.doi.org/10.1103/PhysRevE.58.7561Open DOISearch in Google Scholar

Halley JW, Studies of the interdependence of electronic and atomic dynamics and structure at the electrode-electrolyte interface. Electrochimica Acta. 1996;41:2229-2251 http://dx.doi.org/10.1016/0013-4686(96)00052-710.1016/0013-4686(96)00052-7HalleyJWStudies of the interdependence of electronic and atomic dynamics and structure at the electrode-electrolyte interfaceElectrochimica Acta19964122292251http://dx.doi.org/10.1016/0013-4686(96)00052-7Open DOISearch in Google Scholar

Kalvøy H, Johnsen GK, Martinsen OG, Grimnes S. New Method for Separation of Electrode Polarization Impedance from Measured Tissue Impedance. The Open Biomedical Engineering Journal. 2011;5:8-13 http://dx.doi.org/10.2174/18741207011050100082162536910.2174/1874120701105010008KalvøyHJohnsenGKMartinsenOGGrimnesSNew Method for Separation of Electrode Polarization Impedance from Measured Tissue ImpedanceThe Open Biomedical Engineering Journal20115813http://dx.doi.org/10.2174/1874120701105010008310231221625369Search in Google Scholar

Kottam ATG. Measurement of Electrical Admittance to Study the Onset and Progression of Myocardial Ischemia. ProQuest, USA, 2007KottamATGMeasurement of Electrical Admittance to Study the Onset and Progression of Myocardial IschemiaProQuest, USA2007Search in Google Scholar