Open Access

Analysis of impedance measurements of a suspension of microcapsules using a variable length impedance measurement cell


Cite

Grimnes S, Martinsen OG, Bioimpedance and Bioelectricity Basics, Academic Press, 2000.GrimnesSMartinsenOGBioimpedance and Bioelectricity BasicsAcademic Press200010.1016/B978-012303260-7/50009-5Search in Google Scholar

Geddes LA. Historical evolution of circuit models for the electrode-electrolyte interface, Annals of Biomedical Engineering 25(1), pp. 1–14, 1997. http://dx.doi.org/10.1007/BF02738534912472510.1007/BF02738534GeddesLAHistorical evolution of circuit models for the electrode-electrolyte interfaceAnnals of Biomedical Engineering2511141997http://dx.doi.org/10.1007/BF027385349124725Search in Google Scholar

Fricke H, Curtis HJ, The electrical impedance of hemolized suspensions of mamalian erythrocytes, J. Gen. Physol 18, 821-836, 1934-1935. http://dx.doi.org/10.1085/jgp.18.6.821FrickeHCurtisHJThe electrical impedance of hemolized suspensions of mamalian erythrocytesJ. GenPhysol1882183619341935http://dx.doi.org/10.1085/jgp.18.6.82110.1085/jgp.18.6.821214140219872891Search in Google Scholar

Geddes LA, Measurement of electrolytic resistivity and electrode-electrolyte impedance using variable length conductivity cell, Instr. Sci Tech 4, 157-168, 1972. http://dx.doi.org/10.1080/1073914720854334510.1080/10739147208543345GeddesLAMeasurement of electrolytic resistivity and electrode-electrolyte impedance using variable length conductivity cellInstr. Sci Tech41571681972http://dx.doi.org/10.1080/10739147208543345Open DOISearch in Google Scholar

Jarvis JB et al. Measuring permittivity and permeability of lossy materials, NIST Technical Note 1536, NIST, Boulder, CO, USA, 2004.JarvisJBMeasuring permittivity and permeability of lossy materials, NIST Technical Note 1536NIST, Boulder, CO, USA2004Search in Google Scholar

Schwan HP, Linear and nonlinear electrode polarization and biological materials, Ann. Biomed. Eng., vol. 20, pp. 269-88, 1992. http://dx.doi.org/10.1007/BF0236853110.1007/BF02368531SchwanHPLinear and nonlinear electrode polarization and biological materialsAnn. Biomed. Engvol. 20269881992http://dx.doi.org/10.1007/BF023685311443824Open DOISearch in Google Scholar

Grimnes S, Martinsen ØG, Sources of error in tetrapolar impedance measurements on biomaterials and other ionic conductors, J. Phys. D. App. Phys., vol. 40, pp. 9-14, 2007. http://dx.doi.org/10.1088/0022-3727/40/1/S0210.1088/0022-3727/40/1/S02GrimnesSMartinsenØGSources of error in tetrapolar impedance measurements on biomaterials and other ionic conductorsJ. Phys. D. App. Physvol. 409142007http://dx.doi.org/10.1088/0022-3727/40/1/S02Open DOISearch in Google Scholar

Schwan HP, Ferris CD, Four electrode null techniques, Rev. Sci. Instrum., vol. 39, pp. 481-5, 1968. http://dx.doi.org/10.1063/1.168341310.1063/1.1683413SchwanHPFerrisCDFour electrode null techniquesRev. Sci. Instrumvol. 3948151968http://dx.doi.org/10.1063/1.1683413Open DOISearch in Google Scholar

Geddes LA, Da Costa CP, Wise G, The impedance of stainless steel electrodes, Med. Biol. Eng., vol. 9, pp. 511-21, 1971. http://dx.doi.org/10.1007/BF0247470810.1007/BF02474708GeddesLADa CostaCPWiseGThe impedance of stainless steel electrodesMed. Biol. Engvol. 9511211971http://dx.doi.org/10.1007/BF024747085159049Open DOISearch in Google Scholar

Padmaraj D, Miller JH, Wosik J, Zagozdzon-Wosik W, Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes, Biosensors & bioelectronics, 29(1), 13–7, 2011. http://dx.doi.org/10.1016/j.bios.2011.06.0502187246410.1016/j.bios.2011.06.050PadmarajDMillerJHWosikJZagozdzon-WosikWReduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodesBiosensors & bioelectronics2911372011http://dx.doi.org/10.1016/j.bios.2011.06.05021872464Search in Google Scholar

Kalvøy H, Johnsen GK, Martinsen OG, Grimnes S, New method for separation of electrode polarization impedance from measured tissue impedance, The Open Biomedical Engineering Journal 5, pp. 8–13, 2011.2162536910.2174/1874120701105010008KalvøyHJohnsenGKMartinsenOGGrimnesSNew method for separation of electrode polarization impedance from measured tissue impedanceThe Open Biomedical Engineering Journal58132011310231221625369Search in Google Scholar

Hill NE, Vaughan VE, Price AH, Davies M, Dielectric properties and molecular behavior, Van Nostrand Reinchold Company, GB, 1969.HillNEVaughanVEPriceAHDielectric properties and molecular behaviorVan Nostrand Reinchold Company, GB1969Search in Google Scholar

Raju GG, Dielectrics in electric field, Marcel Dekker, 2003. http://dx.doi.org/10.1201/9780203912270RajuGGDielectrics in electric fieldMarcel Dekker2003http://dx.doi.org/10.1201/978020391227010.1201/9780203912270Search in Google Scholar

Barsoukov E, Macdonald JR, Impedance spectroscopy theory, experiment and applications, Wiley-Interscience, USA, 2005. http://dx.doi.org/10.1002/0471716243BarsoukovEMacdonaldJRImpedance spectroscopy theory, experiment and applicationsWiley-InterscienceUSA2005http://dx.doi.org/10.1002/047171624310.1002/0471716243Search in Google Scholar

Cirkel P A., van der Ploeg JPM, Koper GJM, Electrode effects in dielectric spectroscopy of colloidal suspensions, Physica A: Statistical Mechanics and its Applications, vol 235(1-2), pp. 269–78, 1997.10.1016/S0378-4371(96)00347-0CirkelP A.vander Ploeg JPMKoperGJMElectrode effects in dielectric spectroscopy of colloidal suspensionsPhysica A: Statistical Mechanics and its Applicationsvol 2351-2269781997Open DOISearch in Google Scholar

Fricke H, The theory of electrolytic polarization, Phil. Mag. 14, pp. 310-318, 1932.10.1080/14786443209462064FrickeHThe theory of electrolytic polarizationPhil. Mag143103181932Open DOISearch in Google Scholar

Yardley JE, Todd R, Nicholson DJ, Barrett J, Kell DB, Davey CL, Correction of the influence of baseline artefacts and electrode polarisation on dielectric spectra, Bioelectrochemistry 1(1), pp. 53–65, 2000. http://dx.doi.org/10.1016/S0302-4598(99)00069-0YardleyJEToddRNicholsonDJBarrettJKellDBDaveyCLCorrection of the influence of baseline artefacts and electrode polarisation on dielectric spectraBioelectrochemistry1153–652000http://dx.doi.org/10.1016/S0302-4598(99)00069-010.1016/S0302-4598(99)00069-0Search in Google Scholar

Bordi F, Cametti C, Gili T, Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions, Bioelectrochemistry, vol 54(1), pp. 53–61, 2001. http://dx.doi.org/10.1016/S1567-5394(01)00110-410.1016/S1567-5394(01)00110-4BordiFCamettiCGiliTReduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensionsBioelectrochemistryvol 54153612001http://dx.doi.org/10.1016/S1567-5394(01)00110-4Open DOISearch in Google Scholar

Mirtaheri P, Grimnes S, Martinsen OG, Electrode polarization impedance in weak NaCl aqueous solutions, IEEE Transactions on Biomedical Engineering, vol 52(12), pp. 2093–9, 2005. http://dx.doi.org/10.1109/TBME.2005.85763910.1109/TBME.2005.857639MirtaheriPGrimnesSMartinsenOGElectrode polarization impedance in weak NaCl aqueous solutionsIEEE Transactions on Biomedical Engineeringvol 5212209392005http://dx.doi.org/10.1109/TBME.2005.85763916366232Open DOISearch in Google Scholar

Benita Simon, Microencapsulation: Methods and Industrial Applications, Marcel Dekker, Inc., New York. 1996.BenitaSimonMicroencapsulation: Methods and Industrial ApplicationsMarcel Dekker, IncNew York1996Search in Google Scholar