Open Access

Nonlinear Control of Underwater Robotic Vehicle in Plane Motion

   | Sep 30, 2016

Cite

[1] Fossen T. I., Marine Control Systems, Marine Cybernetics AS, Trondheim 2002.Search in Google Scholar

[2] Fossen T. I., Handbook of Marine Craft Hydrodynamics and Motion Control, John Wiley and Sons, Chichester 2011.10.1002/9781119994138Search in Google Scholar

[3] Garus J., Małecki J., Application of Soft Computing Techniques to Motion Control of Underwater Robotic Vehicle, ‘Agricultural Engineering. Research Papers’, 2014, Vol. 46, No. 1, pp. 4-13.10.15544/ageng.2014.001Search in Google Scholar

[4] Garus J., Studański R., Vidan P., Modelling of Underwater Robotic Vehicle Motion with Using of Genetic Algorithms, ‘Applied Mechanics and Materials’, 2016, Vol. 817, pp. 177-186.10.4028/www.scientific.net/AMM.817.177Search in Google Scholar

[5] Lantos B., Muton L., Nonlinear Control of Vehicles and Robots, Springer-Verlag, London 2011.10.1007/978-1-84996-122-6Search in Google Scholar

[6] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, New York 1994.10.1007/978-3-662-07418-3Search in Google Scholar

[7] Ogata K., Modern Control Engineering, Prentice Hall, New Jersey 2002.Search in Google Scholar

[8] Spong M. W., Vidyasagar M., Robot Dynamics and Control, John Wiley and Sons, Chichester 1989.Search in Google Scholar

[9] Szymak P., Selection of Methods for Underwater Robot Control, ‘Solid State Phenomena’, 2010, Vol. 164, pp. 149-154.10.4028/www.scientific.net/SSP.164.149Search in Google Scholar

[10] Żak B., Hożyń S., Low-Cost MEMS Accelerometers for Short Duration Micro ROV Distance Measurement, ‘Solid State Phenomena’, 2014, Vol. 210, pp. 280-286.10.4028/www.scientific.net/SSP.210.280Search in Google Scholar