Open Access

Nanoparticles in therapeutic applications and role of albumin and casein nanoparticles in cancer therapy


Cite

Beekes RSP. [να̃νoς]. In: Etymological Dictionary of Greek, volume II, Beekes RSP, editor. Leiden: Brill; 2010, p. 995.BeekesRSP.[να̃νoς]Etymological Dictionary of GreekvolumeIIBeekesRSPLeidenBrill2010995Search in Google Scholar

Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: an overview of preparation and characterization. J App Pharm Sci. 2011; 1:228-34.PalSLJanaUMannaPKMohantaGPManavalanR.Nanoparticle: an overview of preparation and characterizationJ App Pharm Sci.2011122834Search in Google Scholar

Sailaja AK, Amareskwar P. Preparation of BSA nanoparticles by desolvation technique using acetone as desolvating agent. Int J Pharm Sci Nanotech. 2012; 5:1643-47.SailajaAKAmareskwarP.Preparation of BSA nanoparticles by desolvation technique using acetone as desolvating agentInt J Pharm Sci Nanotech.20125164347Search in Google Scholar

Scalf J, West P. Part 1: Introduction to nanoparticle characterization with AFM. Santa Clara: Pacific Nanotechnology, Inc.; 2006, p. 1-8.ScalfJWestP.Part 1: Introduction to nanoparticle characterization with, AFMSanta ClaraPacific Nanotechnology, Inc.200618Search in Google Scholar

Okuyama K, Lenggoro W, Iwaki T. Nanoparticle preparation and its application - a nanotechnology particle project in Japan. In: Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04); 2004 Aug 25–27; Banff, AB, Canada. Los Alamitos, CA: IEEE Computer Society; 2004, p. 369-372.OkuyamaKLenggoroWIwakiT.Nanoparticle preparation and its application - a nanotechnology particle project in JapanProceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04)2004Aug 25–27Banff, AB, Canada. Los Alamitos, CAIEEE Computer Society200436937210.1109/ICMENS.2004.1508978Search in Google Scholar

Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y. Protein nanoparticles as drug delivery carriers for cancer therapy. Bio Med Res. 2014; 2014:1-12. 10.1155/2014/180549.LohcharoenkalWWangLChenYCRojanasakulY.Protein nanoparticles as drug delivery carriers for cancer therapyBio Med Res.2014201411210.1155/2014/180549397741624772414Open DOISearch in Google Scholar

Durán N, Silveira CP, Durán M, Stéfani D, Martinez T. Silver nanoparticle protein corona and toxicity: a mini review. J Nanobiotechnology. 2015; 13:1-17.DuránNSilveiraCPDuránMStéfaniDMartinezT.Silver nanoparticle protein corona and toxicity: a mini reviewJ Nanobiotechnology.20151311710.1186/s12951-015-0114-4455935426337542Search in Google Scholar

Jain N, Bhargava A, Rathi M, Dilip RV, Panwar J. Removal of protein capping enhances the antibacterial efficiency of biosynthesized silver nanoparticles. PLoS One. 2015; 10:1-19.JainNBhargavaARathiMDilipRVPanwarJ.Removal of protein capping enhances the antibacterial efficiency of biosynthesized silver nanoparticlesPLoS One.20151011910.1371/journal.pone.0134337452046726226385Search in Google Scholar

Akbarzadeh A, Sadabady RR, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013; 8:1-9.AkbarzadehASadabadyRRDavaranSJooSWZarghamiNHanifehpourYLiposome: classification, preparation, and applicationsNanoscale Res Lett.201381910.1186/1556-276X-8-102359957323432972Search in Google Scholar

Prabhu V, Uzzaman S, Mariammal V, Grace B, Guruvayoorappan C. Nanoparticles in drug delivery and cancer therapy: the giant rats tail. J Cancer Ther. 2011; 2:325-34.10.4236/jct.2011.23045PrabhuVUzzamanSMariammalVGraceBGuruvayoorappanC.Nanoparticles in drug delivery and cancer therapy: the giant rats tailJ Cancer Ther.2011232534Open DOISearch in Google Scholar

Heneweer C, Gendy SEM, Medina OP. Liposomes and inorganic nanoparticles for drug delivery and cancer imaging. Ther Deliv. 2012; 3:1-13.HeneweerCGendySEMMedinaOP.Liposomes and inorganic nanoparticles for drug delivery and cancer imagingTher Deliv.2012311310.4155/tde.12.3822834408Search in Google Scholar

Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2012; 65:36-48.23036225AllenTMCullisPR.Liposomal drug delivery systems: from concept to clinical applicationsAdv Drug Deliv Rev.201265364810.1016/j.addr.2012.09.03723036225Search in Google Scholar

Salústio PJ, Pontes P, Conduto C, Sanches I, Carvalho C, Arrais J, et al. Advanced technologies for oral controlled release: cyclodextrins for oral controlled release. AAPS Pharm Sci Tech. 2011; 12:1276-92.10.1208/s12249-011-9690-2SalústioPJPontesPCondutoCSanchesICarvalhoCArraisJAdvanced technologies for oral controlled release: cyclodextrins for oral controlled releaseAAPS Pharm Sci Tech.201112127692322552921948320Open DOISearch in Google Scholar

Zhanga J, Ma PX. Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev. 2013; 65:1-39.ZhangaJMaPX.Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspectiveAdv Drug Deliv Rev.20136513910.1016/j.addr.2013.05.001388599423673149Search in Google Scholar

Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS Pharm Sci Tech. 2005; 6:E329-57.10.1208/pt060243ChallaRAhujaAAliJKharRK.Cyclodextrins in drug delivery: an updated reviewAAPS Pharm Sci Tech.20056E32957275054616353992Open DOISearch in Google Scholar

Gidwani B, Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. Bio Med Res Int. 2015; 2015:1-15.GidwaniBVyasA.A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugsBio Med Res Int.2015201511510.1155/2015/198268463702126582104Search in Google Scholar

Vasile E, Serafim A, Petre D, Giol D, Dubruel P, Iovu H, Stancu IC. Direct synthesis and morphological characterization of gold dendrimer nanocomposites prepared using PAMAM succinamic acid dendrimers: preliminary study of the calcification potential.Scientific World J. 2014; 2014:1-5.VasileESerafimAPetreDGiolDDubruelPIovuHStancuIC.Direct synthesis and morphological characterization of gold dendrimer nanocomposites prepared using PAMAM succinamic acid dendrimers: preliminary study of the calcification potentialScientific World J.201420141510.1155/2014/103462392628424600316Search in Google Scholar

Córdoba EV, Maly M, De la Mata F, Gómez R, Pion M, Muñoz MA, et al. Antiviral mechanism of polyanionic carbosilane dendrimers against HIV-1. Int J Nanomed. 2016; 11:1281-94.CórdobaEVMalyMDe la MataFGómezRPionMMuñozMAAntiviral mechanism of polyanionic carbosilane dendrimers against HIV-1Int J Nanomed.20161112819410.2147/IJN.S96352482759527103798Search in Google Scholar

Glasgow MDA, Chougule MB. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J Biomed Nanotechnol, 2015; 11:1859-98.10.1166/jbn.2015.214526554150GlasgowMDAChouguleMB.Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imagingJ Biomed Nanotechnol201511185998481644426554150Open DOISearch in Google Scholar

Tiwari PM, Vig K, Dennis VA, Shree R. Singh. Functionalized gold nanoparticles and their biomedical applications. J Nanosci Nanotechnol. 2011; 1:31-63.TiwariPMVigKDennisVAShreeR.Singh. Functionalized gold nanoparticles and their biomedical applicationsJ Nanosci Nanotechnol.20111316310.3390/nano1010031531504828348279Search in Google Scholar

Khan AK, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res. 2014; 13:1169-77.10.4314/tjpr.v13i7.23KhanAKRashidRMurtazaGZahraA.Gold nanoparticles: synthesis and applications in drug deliveryTrop J Pharm Res.201413116977Open DOISearch in Google Scholar

Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold nanotheranostics: proof-of-concept or clinical tool? J Nanomater. 2015; 5:1853-7910.3390/nano5041853PedrosaPVinhasRFernandesABaptistaPV.Gold nanotheranostics: proof-of-concept or clinical tool?J Nanomater.20155185379530479228347100Open DOISearch in Google Scholar

Mocan L. Drug delivery applications of gold nanoparticles. Biotechnol Mol Biol Nanomed. 2013; 1: 1-6.MocanL.Drug delivery applications of gold nanoparticlesBiotechnol Mol Biol Nanomed.2013116Search in Google Scholar

Jawahara N, Surendraa E, Krishna KR. A review on carbon nanotubes: a novel drug carrier for targeting to cancer cells. J Pharm Sci Res. 2015; 7:141-54.JawaharaNSurendraaEKrishnaKR.A review on carbon nanotubes: a novel drug carrier for targeting to cancer cellsJ Pharm Sci Res.2015714154Search in Google Scholar

Kushwaha SKS, Ghoshal S, Rai AK, Singh S. Carbon nanotubes as a novel drug delivery system for anticancer therapy: a review. Braz J Pharm Sci. 2013; 49:629-43.10.1590/S1984-82502013000400002KushwahaSKSGhoshalSRaiAKSinghS.Carbon nanotubes as a novel drug delivery system for anticancer therapy: a reviewBraz J Pharm Sci.20134962943Open DOISearch in Google Scholar

Aboofazeli R. Carbon nanotubes: a promising approach for drug delivery. Iran J Pharm Res. 2010;9: 1-3.24363699AboofazeliR.Carbon nanotubes: a promising approach for drug deliveryIran J Pharm Res.2010913Search in Google Scholar

Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv. 2008; 5:263-7.1831864910.1517/17425247.5.3.263QiLGaoX.Emerging application of quantum dots for drug delivery and therapyExpert Opin Drug Deliv.20085263718318649Search in Google Scholar

Zrazhevskiy P, Senawb WM, Gao X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev. 2010: 1-29.ZrazhevskiyPSenawbWMGaoX.Designing multifunctional quantum dots for bioimaging, detection, and drug deliveryChem Soc Rev.201012910.1039/b915139g321203620697629Search in Google Scholar

He D, Wang D, Quan W, Yu C-y. Functional quantum dots for promising cancer diagnosis and therapy. Int J Nanomed Nanosurg. 2015; 1:1-6.HeDWangDQuanWYuC-y.Functional quantum dots for promising cancer diagnosis and therapyInt J Nanomed Nanosurg.2015116Search in Google Scholar

Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 2010; 75:1-18.10.1016/j.colsurfb.2009.09.00119782542KumariAYadavSKYadavSC.Biodegradable polymeric nanoparticles based drug delivery systemsColloids Surf B Biointerfaces.20107511819782542Open DOISearch in Google Scholar

Muhamad II, Selvakumaran S, Lazim NAM. Designing polymeric nanoparticles for targeted drug delivery system. Nanomedicine: 287-313.MuhamadIISelvakumaranSLazimNAM.Designing polymeric nanoparticles for targeted drug delivery systemNanomedicine287313Search in Google Scholar

Bennet D, Kim S. Polymer nanoparticles for smart drug delivery. 2014:257-310.BennetDKimS.Polymer nanoparticles for smart drug delivery.201425731010.5772/58422Search in Google Scholar

Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010; 624:163-75.10.1007/978-1-60761-609-2_1120217595ChanJMValenciaPMZhangLLangerRFarokhzadOC.Polymeric nanoparticles for drug deliveryMethods Mol Biol.20106241637520217595Open DOISearch in Google Scholar

Das S, Banerjee R and Bellare J. Aspirin loaded albumin nanoparticles by coacervation: implications in drug delivery. Trends Biomater Artif Organs. 2005; 18:203-12.DasSBanerjeeRBellareJ.Aspirin loaded albumin nanoparticles by coacervation: implications in drug deliveryTrends Biomater Artif Organs.20051820312Search in Google Scholar

Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm. 2010; 76:1-9.2042090410.1016/j.ejpb.2010.04.008OfokansiKWinterGFrickerGCoesterC.Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and deliveryEur J Pharm Biopharm.2010761920420904Search in Google Scholar

Gulfam M, Kim JE, Lee JM, Ku B, Chung HB, Chung BG. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir. 2012; 28:8216-23.10.1021/la300691n22568862GulfamMKimJELeeJMKuBChungHBChungBG.Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cellsLangmuir.20122882162322568862Open DOISearch in Google Scholar

Irache JM, Gueguen J, Orecchioni AM. Development of drug delivery systems from vegetal proteins: legumin nanoparticles. Drug Dev Ind Pharm. 2008; 22: 1-16.IracheJMGueguenJOrecchioniAM.Development of drug delivery systems from vegetal proteins: legumin nanoparticlesDrug Dev Ind Pharm.200822116Search in Google Scholar

Huang W, Zou T, Li S, Jing J, Xia X, Liu X. Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS Pharm Sci Tech. 2013; 14:675-81.10.1208/s12249-013-9953-1HuangWZouTLiSJingJXiaXLiuX.Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning processAAPS Pharm Sci Tech.20131467581366602023516111Open DOISearch in Google Scholar

Sahu A, Kasoju N, Bora U. Fluorescence study of curcumin–casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules. 2008; 9:2905-12.10.1021/bm800683f18785706SahuAKasojuNBoraU.Fluorescence study of curcumin–casein micelle complexation and its application as a drug nanocarrier to cancer cellsBiomacromolecules.2008929051218785706Open DOISearch in Google Scholar

Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev. 2013; 42:1147-235.10.1039/C2CS35265F23238558NicolasJMuraSBrambillaDMackiewiczNCouvreurP.Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug deliveryChem Soc Rev.201342114723523238558Open DOISearch in Google Scholar

Yang L, Cui F, Cun D, Tao A, Shi K, Lin W. Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticles. Int J Pharm. 2007; 340:163-72.1748277910.1016/j.ijpharm.2007.03.028YangLCuiFCunDTaoAShiKLinW.Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) nanoparticlesInt J Pharm.20073401637217482779Search in Google Scholar

Wang Y, Li P, Truong T, Tran D, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials. 2016; 6:1-18.WangYLiPTruongTTranDZhangJKongL.Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancerNanomaterials.2016611810.3390/nano6020026Search in Google Scholar

Sridhar R, Ramakrishna S. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications. Biomatter. 2013; 3:e24281.1-81.12.SridharRRamakrishnaS.Electrosprayed nanoparticles for drug delivery and pharmaceutical applicationsBiomatter20133e242811-81.1210.4161/biom.24281Search in Google Scholar

Allouche J. Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methods. In: Brayner R, Fiévet F, Coradin T, editors. Nanomaterials: a danger or a promise? London: Springer-Verlag; 2013, p. 27-74.AlloucheJ.Synthesis of organic and bioorganic nanoparticles: an overview of the preparation methodsBraynerRFiévetFCoradinTNanomaterials: a danger or a promise?LondonSpringer-Verlag2013277410.1007/978-1-4471-4213-3_2Search in Google Scholar

Manjanna KM, Shivakumar B, Kumar TMP. Microencapsulation: an acclaimed novel drug-delivery system for NSAIDs in arthritis. Crit Rev Ther Drug Carrier Syst. 2010; 27:501-32.ManjannaKMShivakumarBKumarTMP.Microencapsulation: an acclaimed novel drug-delivery system for NSAIDs in arthritisCrit Rev Ther Drug Carrier Syst.2010275013210.1615/CritRevTherDrugCarrierSyst.v27.i6.20Search in Google Scholar

Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicine. 2007; 2:219-32.10.2217/17435889.2.2.219BetancourtTBrownBBrannon-PeppasL.Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluationNanomedicine.2007221932Open DOISearch in Google Scholar

Swed A, Cordonnier T, Fleury F, Boury F. Protein encapsulation into PLGA nanoparticles by a novel phase, separation method using non-toxic solvents. J Nanomed Nanotechnol. 2014; 5:1-8.SwedACordonnierTFleuryFBouryF.Protein encapsulation into PLGA nanoparticles by a novel phase, separation method using non-toxic solventsJ Nanomed Nanotechnol.2014518Search in Google Scholar

Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, Zhang Z. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010; 5:669-77.20957218ZhaoDZhaoXZuYLiJZhangYJiangRZhangZ.Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticlesInt J Nanomedicine.201056697710.2147/IJN.S12918Search in Google Scholar

Chan Y-H, Wu P-J. Semi conducting polymer nanoparticles as fluorescent probes for biological imaging and sensing. Part Part Syst Charact. 2015; 32: 11-28.10.1002/ppsc.201400123ChanY-HWuP-J.Semi conducting polymer nanoparticles as fluorescent probes for biological imaging and sensingPart Part Syst Charact.2015321128Open DOISearch in Google Scholar

Rhaese S, von Briesen H, Rübsamen-Waigmann H, Kreuter J, Langer K. Human serum albuminpolyethylenimine nanoparticles for gene delivery. J Control Release. 2003; 92:199-208.10.1016/S0168-3659(03)00302-X14499197RhaeseSvon BriesenHRübsamen-WaigmannHKreuterJLangerK.Human serum albuminpolyethylenimine nanoparticles for gene deliveryJ Control Release.200392199208Open DOISearch in Google Scholar

Duclairoir C, Nakache E, Marchais H, Orecchioni AM. Formation of gliadin nanoparticles: influence of the solubility parameter of the protein solvent. Colloid Polym Sci. 1998; 276:321-7.10.1007/s003960050246DuclairoirCNakacheEMarchaisHOrecchioniAM.Formation of gliadin nanoparticles: influence of the solubility parameter of the protein solventColloid Polym Sci.19982763217Open DOISearch in Google Scholar

Cruz MM, Flores-Fernandez GM, Morales-Cruz M, Orellano EA, Rodriguez-Martinez JA, Ruiz M, et al., Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results Pharma Sciences. 2012; 2:79-85.10.1016/j.rinphs.2012.11.001CruzMMFlores-FernandezGMMorales-CruzMOrellanoEARodriguez-MartinezJARuizMTwo-step nanoprecipitation for the production of protein-loaded PLGA nanospheresResults Pharma Sciences.201227985354152923316451Open DOISearch in Google Scholar

Elzoghby AO, El-Fotoh WSA, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release. 2011; 153: 206-16.10.1016/j.jconrel.2011.02.01021338636ElzoghbyAOEl-FotohWSAElgindyNA.Casein-based formulations as promising controlled release drug delivery systemsJ Control Release.20111532061621338636Open DOISearch in Google Scholar

Paukkonen H. Casein-poly (acrylic acid) nanoparticles as controlled delivery vehicles. Master’s thesis, University of Helsinki, 2013, p. 1-117.PaukkonenH.Casein-poly (acrylic acid) nanoparticles as controlled delivery vehiclesMaster’s thesisUniversity of Helsinki20131117Search in Google Scholar

Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci. 2013; 14:1629-54.10.3390/ijms1401162923344060NittaSKNumataK.Biopolymer-based nanoparticles for drug/gene delivery and tissue engineeringInt J Mol Sci.201314162954356533823344060Open DOISearch in Google Scholar

Vuignier K, Schappler J, Veuthey JL, Carrupt PA, Martel S. Drug–protein binding: a critical review of analytical tools. Anal Bioanal Chem. 2010; 398:53-66.10.1007/s00216-010-3737-1VuignierKSchapplerJVeutheyJLCarruptPAMartelS.Drug–protein binding: a critical review of analytical toolsAnal Bioanal Chem.2010398536620454782Open DOISearch in Google Scholar

Chen L, Remondetto GE, Subirade M. Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol. 2006; 17:272-83.10.1016/j.tifs.2005.12.011ChenLRemondettoGESubiradeM.Food protein-based materials as nutraceutical delivery systemsTrends Food Sci Technol.20061727283Open DOISearch in Google Scholar

Chen L, Subirade M. Food-protein-derived materials and their use as carriers and delivery systems for active food components. In: Garti N, editor. Delivery and controlled release of bioactives in foods and nutraceuticals. New Dehli: Woodhead Publishing; 2008, p. 251-78.ChenLSubiradeM.Food-protein-derived materials and their use as carriers and delivery systems for active food componentsGartiNDelivery and controlled release of bioactives in foods and nutraceuticalsNew DehliWoodhead Publishing20082517810.1533/9781845694210.2.251Search in Google Scholar

Livney YD. Milk proteins as vehicles for bioactives. Curr Opin Colloid Interface Sci. 2010; 15:73-83.10.1016/j.cocis.2009.11.002LivneyYD.Milk proteins as vehicles for bioactivesCurr Opin Colloid Interface Sci.2010157383Open DOISearch in Google Scholar

Swaisgood HE. Chemistry of the caseins. In: Fox PF, McSweeney PLH. Advanced dairy chemistry. Volume 1. Proteins, 3rd ed. New York: Kluwer Academic/Plenum; 2003, p. 139-202.SwaisgoodHE.Chemistry of the caseinsFoxPFMcSweeneyPLH.Advanced dairy chemistry1Proteins3rdNew YorkKluwer Academic/Plenum200313920210.1007/978-1-4419-8602-3_3Search in Google Scholar

Semo E, Kesselman E, Danino D, Livney YD. Casein micelle as a natural nanocapsular vehicle for nutraceuticals. Food Hydrocoll. 2007; 21:936-42.10.1016/j.foodhyd.2006.09.006SemoEKesselmanEDaninoDLivneyYD.Casein micelle as a natural nanocapsular vehicle for nutraceuticalsFood Hydrocoll.20072193642Open DOISearch in Google Scholar

Diak AO, Bani-Jaber A, Amro B, Jones D, Andrews GP. The manufacture and characterization of casein films as novel tablet coatings. Food Bioprod Process. 2007; 85:284-90.10.1205/fbp07030DiakAOBani-JaberAAmroBJonesDAndrewsGP.The manufacture and characterization of casein films as novel tablet coatingsFood Bioprod Process.20078528490Open DOISearch in Google Scholar

Lauber S, Klostermeyer H, Henle T. Influence of irreversible casein crosslinking on the gel strength of yoghurt. Czech J Food Sci. 2000; 18:69-71.LauberSKlostermeyerHHenleT.Influence of irreversible casein crosslinking on the gel strength of yoghurtCzech J Food Sci.2000186971Search in Google Scholar

Watanabe A, Hanawa T, Sugihara M, Yamamoto K. Release profiles of phenytoin from new oral dosage form for the elderly. Chem Pharm Bull. 1994; 42:1642-5.795491610.1248/cpb.42.1642WatanabeAHanawaTSugiharaMYamamotoK.Release profiles of phenytoin from new oral dosage form for the elderlyChem Pharm Bull.199442164257954916Search in Google Scholar

Zimet P, Rosenberg D, Livney YD. Re-assembled casein micelles and casein nanoparticles as nanovehicles for w-3 polyunsaturated fatty acids. Food Hydrocoll. 2011; 25:1270-6.10.1016/j.foodhyd.2010.11.025ZimetPRosenbergDLivneyYD.Re-assembled casein micelles and casein nanoparticles as nanovehicles for w-3 polyunsaturated fatty acidsFood Hydrocoll.20112512706Open DOISearch in Google Scholar

Vino S, Abinaya A, Divya V, Ghosh AR. Controlled release of phenytoin sodium from casein microparticles. Int J Pharm Biol Sci. 2014; 5:233-41.VinoSAbinayaADivyaVGhoshAR.Controlled release of phenytoin sodium from casein microparticlesInt J Pharm Biol Sci.2014523341Search in Google Scholar

Singh A, Bajpai J, Bajpai AK. Investigation of magnetically controlled water intake behavior of Iron Oxide Impregnated Superparamagnetic Casein Nanoparticles (IOICNPs). J Nanobiotechnology. 2014; 12:1-13.SinghABajpaiJBajpaiAK.Investigation of magnetically controlled water intake behavior of Iron Oxide Impregnated Superparamagnetic Casein Nanoparticles (IOICNPs)J Nanobiotechnology.20141211310.1186/s12951-014-0038-4418975525277602Search in Google Scholar

Raj J, Uppuluri KB. Metformin loaded casein micelles for sustained delivery: formulation, characterization and in-vitro evaluation. Biomed Pharma J. 2015; 8: 83-9.10.13005/bpj/585RajJUppuluriKB.Metformin loaded casein micelles for sustained delivery: formulation, characterization and in-vitro evaluationBiomed Pharma J.20158839Open DOISearch in Google Scholar

Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing, nature to cure disease. Mol Cell The. 2016; 3:1-12.LarsenMTKuhlmannMHvamMLHowardKA.Albumin-based drug delivery: harnessing, nature to cure diseaseMol Cell The.2016311210.1186/s40591-016-0048-8476955626925240Search in Google Scholar

Yu Z, Yu M, Zhang Z, Hong G Xiong QQ. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res Lett. 2014; 9:1-7.YuZYuMZhangZHongGXiongQQ.Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner earNanoscale Res Lett.201491710.1186/1556-276X-9-343410665925114637Search in Google Scholar

Jenita JL, Chocalingam V, Wilson B. Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug— Efavirenz. Int J Pharm Investig. 2014; 4:142-8.10.4103/2230-973X.13834825126528JenitaJLChocalingamVWilsonB.Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug— EfavirenzInt J Pharm Investig.201441428413138625126528Open DOISearch in Google Scholar

Maghsoudi A, Shojaosadati SA, Farahani EV. 5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release study. AAPS Pharm Sci Tech. 2008; 9:1092-6.10.1208/s12249-008-9146-5MaghsoudiAShojaosadatiSAFarahaniEV.5-Fluorouracil-loaded BSA nanoparticles: formulation optimization and in vitro release studyAAPS Pharm Sci Tech.2008910926262826718850275Open DOISearch in Google Scholar

Li FQ, Su H, Wang J, Liu JY, Zhu QG, Fei YB, Pan YH, Hu JH. Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targeting. Int J Phar. 2008; 349:274-82.10.1016/j.ijpharm.2007.08.001LiFQSuHWangJLiuJYZhuQGFeiYBPanYHHuJH.Preparation and characterization of sodium ferulate entrapped bovine serum albumin nanoparticles for liver targetingInt J Phar.20083492748217870261Open DOISearch in Google Scholar

Namasivayam SKR, Robin ATG. Preparation, optimization and characterization of biocompatible nanoalbumin-ofloxacin (BSANP-OF) conjugate and evaluation of control release, anti bacterial activity against clinical isolate of Pseudomonas aeruginosa. Asian J Pharm Clin Res. 2013; 6:235-9.NamasivayamSKRRobinATG.Preparation, optimization and characterization of biocompatible nanoalbumin-ofloxacin (BSANP-OF) conjugate and evaluation of control release, anti bacterial activity against clinical isolate of Pseudomonas aeruginosaAsian J Pharm Clin Res.201362359Search in Google Scholar

Zhen X, Wang X, Xie C, Wu W, Jiang X. Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticles. Biomaterials. 2013; 34:1372-82.10.1016/j.biomaterials.2012.10.06123158934ZhenXWangXXieCWuWJiangX.Cellular uptake, antitumor response and tumor penetration of cisplatin-loaded milk protein nanoparticlesBiomaterials.20133413728223158934Open DOISearch in Google Scholar

Esmaili M, Ghaffari SM, Moosavi-Movahedi Z, Atri MS, Sharifizadeh A, Farhadi M, et al. Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT - Food Sci Technol. 2011; 44:2166-72.10.1016/j.lwt.2011.05.023EsmailiMGhaffariSMMoosavi-MovahediZAtriMSSharifizadehAFarhadiMBeta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry applicationLWT - Food Sci Technol.201144216672Open DOISearch in Google Scholar

Bar-Zeev M, Assaraf YG, Livney DY. b-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget. 2016; 7:23322-34.Bar-ZeevMAssarafYGLivneyDY.b-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cellsOncotarget.20167233223410.18632/oncotarget.8019502962926989076Search in Google Scholar

Shapira A, Assaraf YG, Livney YD. Beta-casein nanovehicles for oral delivery of chemotherapeutic drugs. Nanomedicine. 2010; 6:119-26.10.1016/j.nano.2009.06.00619616122ShapiraAAssarafYGLivneyYD.Beta-casein nanovehicles for oral delivery of chemotherapeutic drugsNanomedicine.201061192619616122Open DOISearch in Google Scholar

Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokinetics. Int J Nanomedicine. 2013; 2013:1721-32.ElzoghbyAOHelmyMWSamyWMElgindyNA.Novel ionically crosslinked casein nanoparticles for flutamide delivery: formulation, characterization, and in vivo pharmacokineticsInt J Nanomedicine.2013201317213210.2147/IJN.S40674364744323658490Search in Google Scholar

Huang J, Qian W, Wang L, Wu H, Zhou H, Wang AY, et al. Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer. Int J Nanomedicine. 2016; 2016: 3087-99.HuangJQianWWangLWuHZhouHWangAYFunctionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancerInt J Nanomedicine.2016201630879910.2147/IJN.S92722493999027462153Search in Google Scholar

Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K, et al. Sequentially releasing dual-drug-loaded PLGA–casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics. Acta Biomaterialia. 2013; 10: 2112-24.24389318NarayananSPavithranMViswanathANarayananDMohanCCManzoorKSequentially releasing dual-drug-loaded PLGA–casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokineticsActa Biomaterialia.20131021122410.1016/j.actbio.2013.12.04124389318Search in Google Scholar

Narayanan S, Mony U, Vijaykumar DK, Koyakutty M, Paul-Prasanth B, Menon D. Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells. Nanomedicine. 2015; 11: 1399-406.10.1016/j.nano.2015.03.01525888278NarayananSMonyUVijaykumarDKKoyakuttyMPaul-PrasanthBMenonD.Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cellsNanomedicine.201511139940625888278Open DOISearch in Google Scholar

Divsalar A, Razmi M, Saboury AA, Seyedarabi A. The design and characterization of a novel beta-casein nano-vehicle loaded with platinum anticancer drug for drug delivery. Anti-Cancer Agents Med Chem. 2014; 14:892-900.10.2174/1871520614666140207123147DivsalarARazmiMSabouryAASeyedarabiA.The design and characterization of a novel beta-casein nano-vehicle loaded with platinum anticancer drug for drug deliveryAnti-Cancer Agents Med Chem.20141489290024521150Open DOISearch in Google Scholar

Razmi M, Divsalar A, Saboury AA, Izadi Z, Haeré T, Mansuri-Torshizi H. Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drug. Colloids Surf B Biointerfaces. 2013; 1:362-7.RazmiMDivsalarASabouryAAIzadiZHaeréTMansuri-TorshiziH.Beta-casein and its complexes with chitosan as nanovehicles for delivery of a platinum anticancer drugColloids Surf B Biointerfaces.20131362710.1016/j.colsurfb.2013.08.02224028849Search in Google Scholar

Takakura Y, Fujita T, Hashida M, Sezaki H. Disposition characteristics of macromolecules in tumor-bearing mice. Pharm Res. 1990; 7:339-46.10.1023/A:10158071197531694582TakakuraYFujitaTHashidaMSezakiH.Disposition characteristics of macromolecules in tumor-bearing micePharm Res.1990733946Open DOISearch in Google Scholar

Raj J, Uppuluri KB. Metformin loaded casein micelles for sustained delivery: formulation, characterization and in-vitro evaluation. Biomed Pharmacol J. 2015; 8: 83-9.10.13005/bpj/585RajJUppuluriKB.Metformin loaded casein micelles for sustained delivery: formulation, characterization and in-vitro evaluationBiomed Pharmacol J.20158839Open DOISearch in Google Scholar

Jose P, Sundar K, Anjali CH, Ravindran A. Metformin-loaded BSA nanoparticles in cancer therapy: a new perspective for an old antidiabetic drug. Cell Biochem Biophys. 2015; 71:627-36.10.1007/s12013-014-0242-825209744JosePSundarKAnjaliCHRavindranA.Metformin-loaded BSA nanoparticles in cancer therapy: a new perspective for an old antidiabetic drugCell Biochem Biophys.2015716273625209744Open DOISearch in Google Scholar

Noorani L, Stenzel M, Liang R, Pourgholami MH, Morris DL. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. J Nanobiotechnology. 2015; 13:1-12.NooraniLStenzelMLiangRPourgholamiMHMorrisDL.Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft modelJ Nanobiotechnology.20151311210.1186/s12951-015-0082-8440977825890381Search in Google Scholar

Li J-m, Chen W, Wang H, Jin C, Yu X-j, Lu W-y, et al. Preparation of albumin nanospheres loaded with gemcitabine and their cytotoxicity against BXPC-3 cells in vitro. Acta Pharmacol Sin. 2009; 30:1337-43.10.1038/aps.2009.12519730429LiJ-mChenWWangHJinCYuX-jLuW-yPreparation of albumin nanospheres loaded with gemcitabine and their cytotoxicity against BXPC-3 cells in vitro.Acta Pharmacol Sin.200930133743400718019730429Open DOISearch in Google Scholar

Desai N. Nab technology: a drug delivery platform utilising endothelial gp60 receptor-based transport and tumour-derived SPARC for targeting. Drug Delivery Report Winter 2007/2008; Oxford: PharmaVentures; 2008, p. 37-41.DesaiN.Nab technology: a drug delivery platform utilising endothelial gp60 receptor-based transport and tumour-derived SPARC for targetingDrug Delivery Report Winter 2007/2008OxfordPharmaVentures20083741Search in Google Scholar

Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancer. J Clin Oncol. 2005; 23:7794-803.10.1200/JCO.2005.04.93716172456GradisharWJTjulandinSDavidsonNShawHDesaiNBharPPhase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil–based paclitaxel in women with breast cancerJ Clin Oncol.200523779480316172456Open DOISearch in Google Scholar

Shi Y, Su C, Cui W, Li H, Liu L, Feng B, et al. Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. J Nanobiotechnology. 2014; 12:1-11.ShiYSuCCuiWLiHLiuLFengBGefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl-beta-cyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cellsJ Nanobiotechnology.20141211110.1186/s12951-014-0043-7421909625358257Search in Google Scholar

Lomis N, Westfall S, Farahdel L, Malhotra M, Shum-Tim D, Prakash S. Human serum albumin nanoparticles for use in cancer drug delivery: process optimization and in vitro characterization. Nanomaterials. 2016; 6: 1-17.LomisNWestfallSFarahdelLMalhotraMShum-TimDPrakashS.Human serum albumin nanoparticles for use in cancer drug delivery: process optimization and in vitro characterizationNanomaterials.2016611710.3390/nano6060116530262128335244Search in Google Scholar

Tellingen O, Huizing MT, Panday VRN, Schellens JHM, Nooijen WJ, Beijnen JH. Cremophor-EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patient. Br J Cancer. 1999; 81:330-5.1049636110.1038/sj.bjc.6690696TellingenOHuizingMTPandayVRNSchellensJHMNooijenWJBeijnenJH.Cremophor-EL causes (pseudo-) non-linear pharmacokinetics of paclitaxel in patientBr J Cancer.1999813305236285610496361Search in Google Scholar

De T, Trieu V, Yim Z, Cordia J, Yang A, Beals B, et al. Nanoparticle albumin-bound (nab) rapamycin as an anticancer agent. Clin Cancer Res. 2007; 67:14-8.DeTTrieuVYimZCordiaJYangABealsBNanoparticle albumin-bound (nab) rapamycin as an anticancer agentClin Cancer Res.200767148Search in Google Scholar

Han J, Wang Q, Zhang Z, Gong T, Sun X. Cationic bovine serum albumin based self-assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancer. Small. 2014; 10:524-35.10.1002/smll.20130199224106138HanJWangQZhangZGongTSunX.Cationic bovine serum albumin based self-assembled nanoparticles as siRNA delivery vector for treating lung metastatic cancerSmall.2014105243524106138Open DOISearch in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine