Open Access

Osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells promoted by overexpression of osterix


Cite

1. Feldmann RE Jr, Bieback K, Maurer MH, Kalenka A, Burgers HF, Gross B, et al. Stem cell proteomes: a profile of human mesenchymal stem cells derived from umbilical cord blood. Electrophoresis. 2005; 26: 2749-58.10.1002/elps.200410406Open DOISearch in Google Scholar

2. Chen TL, Shen WJ, Kraemer FB. Human BMP-7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures. J Cell Biochem. 2001; 2:187-99.10.1002/jcb.1145Search in Google Scholar

3. Allan EH, Ho PW, Umezawa A, Hata J, Makishima F, Gillespie MT, et al. Differentiation potential of a mouse bone marrow stromal cell line. J Cell Biochem. 2003; 1: 158-69.10.1002/jcb.10614Open DOISearch in Google Scholar

4. Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem. 2001; 82:583-90.10.1002/jcb.1174Open DOISearch in Google Scholar

5. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003:33:919-26.10.1016/j.bone.2003.07.005Open DOISearch in Google Scholar

6. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006; 91:1017-26.Search in Google Scholar

7. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells. 2003; 21:105-10.10.1634/stemcells.21-1-105Open DOISearch in Google Scholar

8. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007; 25:1384-92.10.1634/stemcells.2006-0709Open DOISearch in Google Scholar

9. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004; 22: 1330-7.10.1634/stemcells.2004-0013Open DOISearch in Google Scholar

10. Chang YJ, Shih DT, Tseng CP, Hsieh TB, Lee DC, Hwang SM. Disparate mesenchyme-lineage tendencies in mesenchymal stem cells from human bone marrow and umbilical cord blood. Stem Cells. 2006; 24: 679-85.10.1634/stemcells.2004-0308Open DOISearch in Google Scholar

11. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc nger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002; 108: 17-29.10.1016/S0092-8674(01)00622-5Open DOISearch in Google Scholar

12. Omoteyama K, Takagi M. The effects of Sp7/Osterix gene silencing in the chondroprogenitor cell line, ATDC5. Biochem Biophys Res Commun. 2010; 403:242-6.10.1016/j.bbrc.2010.11.023Search in Google Scholar

13. Lee JS, Lee JM, Im GI. Electroporation-mediated transfer of Runx2 and Osterix genes to enhance osteogenesis of adipose stem cells. Biomaterials. 2011; 32:760-8.10.1016/j.biomaterials.2010.09.042Open DOISearch in Google Scholar

14. Yoshida CA, Furuichi T, Fujita T, Fukuyama R, Kanatani N, Kobayashi S, et al. Core-binding factor beta interacts with Runx2 and is required for skeletal development. Nat Genet. 2002; 32:633-8.10.1038/ng1015Open DOISearch in Google Scholar

15. Cao Y, Zhou Z, de Crombrugghe B, Nakashima K, Guan H, Duan X, et al. Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res. 2005; 65: 1124-8.10.1158/0008-5472.CAN-04-2128Open DOISearch in Google Scholar

16. Tu Q, Valverde P, Chen J. Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells. Biochem Biophys Res Commun. 2006; 341: 1257-65.10.1016/j.bbrc.2006.01.092Search in Google Scholar

17. Ishige I, Nagamura-Inoue T, Honda MJ, Harnprasopwat R, Kido M, Sugimoto M, et al. Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord. Int J Hematol. 2009; 90:261-9.10.1007/s12185-009-0377-3Open DOISearch in Google Scholar

18. Xu J, Liao W, Gu D, Liang L, Liu M, Du W, et al. Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord. Cell Physiol Biochem. 2009; 23:415-24.10.1159/000218188Open DOISearch in Google Scholar

19. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods.1983; 65: 55-63.10.1016/0022-1759(83)90303-4Open DOISearch in Google Scholar

20. Betz VM, Betz OB, Harris MB, Vrahas MS, Evans CH. Bone tissue engineering and repair by gene therapy. Front Biosci. 2008; 13:833-41.10.2741/272417981592Open DOISearch in Google Scholar

21. Gamradt SC, Lieberman JR. Genetic modification of stem cells to enhance bone repair. Ann Biomed Eng. 2004; 32:136-47.10.1023/B:ABME.0000007798.78548.b8Open DOISearch in Google Scholar

22. Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D. Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng. 2007; 13:1135-50.10.1089/ten.2007.0096Open DOISearch in Google Scholar

23. Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass. Nature. 2003; 423:349-55.10.1038/nature01660Search in Google Scholar

24. Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000; 16:191-220.10.1146/annurev.cellbio.16.1.191Open DOISearch in Google Scholar

25. Wu X, Wang S, Chen B, An X. Muscle-derived stem cells: isolation, characterization, differentiation, and application in cell and gene therapy. Cell Tissue Res. 2010; 340:549-67.10.1007/s00441-010-0978-4Search in Google Scholar

26. Huang W, Rudkin GH, Carlsen B, Ishida K, Ghasri P, Anvar B, et al. Overexpression of BMP-2 modulates morphology, growth, and gene expression in osteoblastic cells. Exp Cell Res. 2000; 2274:226-34.Search in Google Scholar

27. Cho HH, Park HT, Kim YJ, Bae YC, Suh KT, Jung JS. Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors. J Cell Biochem. 2005; 96:533-42.10.1002/jcb.20544Open DOISearch in Google Scholar

28. Igarashi M, Kamiya N, Hasegawa M, Kasuya T, Takahashi T, Takagi M. Inductive effects of dexamethasone on the gene expression of Cbfa1, Osterix and bone matrix proteins during differentiation of cultured primary rat osteoblasts. J Mol Histol. 2004; 35:3-10.10.1023/B:HIJO.0000020883.33256.feSearch in Google Scholar

29. Aubin JE. Advances in the osteoblast lineage. Biochem Cell Biol. 1998; 76:899-910.10.1139/o99-005Open DOISearch in Google Scholar

30. Beck GR Jr, Sullivan EC, Moran E, Zerler B. Relationship between alkaline phosphatase levels, osteopontin expression, and mineralization in differentiating MC3T3-E1 osteoblasts. J Cell Biochem. 1998; 68:269-80.10.1002/(SICI)1097-4644(19980201)68:2<269::AID-JCB13>3.0.CO;2-AOpen DOISearch in Google Scholar

31. Sun S, Wang Z, Hao Y. Osterix overexpression enhances osteoblast differentiation of muscle satellite cells in vitro.Int J Oral Maxillofac Surg. 2008; 37:350-6.10.1016/j.ijom.2007.11.024Open DOISearch in Google Scholar

32. Kim YJ, Kim HN, Park EK, Lee BH, Ryoo HM, Kim SY, et al. The bone-related Zn ­nger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene. 2006; 366:145-51.10.1016/j.gene.2005.08.021Search in Google Scholar

33. Huang S, Wang Z. Influence of platelet-rich plasma on proliferation and osteogenic differentiation of skeletal muscle satellite cells: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 110:453-62.10.1016/j.tripleo.2010.02.00920452253Open DOISearch in Google Scholar

34. Standal T, Borset M, Sundan A. Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol. 2004; 26:179-84.Search in Google Scholar

35. Gericke A, Qin C, Spevak L, Fujimoto Y, Butler WT, Sorensen ES, et al. Importance of phosphorylation for osteopontin regulation of biomineralization. Calcif Tissue Int. 2005; 77:45-54.10.1007/s00223-004-1288-1145141416007483Open DOISearch in Google Scholar

36. Golub EE. Role of Matrix Vesicles in Biomineralization. Biochim Biophys Acta. 2009; 1790: 1592-8.10.1016/j.bbagen.2009.09.006278368919786074Search in Google Scholar

37. Allori AC, Sailon AM, Warren SM. Biological basis of bone formation, remodeling, and repair-part II: extracellular matrix. Tissue Eng Part B Rev. 2008; 14: 275-83.10.1089/ten.teb.2008.008319183102Open DOISearch in Google Scholar

38. Gersbach CA, Byers BA, Pavlath GK, Garcia AJ. Runx2/Cbfa1 stimulates transdifferentiation of primary skeletal myoblasts into a mineralizing osteoblastic phenotype. Exp Cell Res. 2004; 300:406-17.10.1016/j.yexcr.2004.07.03115475005Search in Google Scholar

39. Yang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT. In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res. 2003; 18: 705-15.10.1359/jbmr.2003.18.4.705356515912674331Open DOISearch in Google Scholar

40. Byers BA, Pavlath GK, Murphy TJ, Karsenty G, Garcia AJ. Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res. 2002; 17:1931-44.10.1359/jbmr.2002.17.11.193112412799Open DOISearch in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine