Open Access

A step forward into respiratory genetics: overview contribution of genetics in respiratory diseases


Cite

1. Hall IP. How will genetic approaches assist in the management of respiratory diseases? Curr Opin Pharmacol. 2009; 9:256-61.10.1016/j.coph.2009.03.00319409845Open DOISearch in Google Scholar

2. Owen C, Stockley R. Molecular biology and respiratory disease. I- Basic principles. Thorax. 1990; 45:52-6.10.1136/thx.45.1.524756502181718Open DOISearch in Google Scholar

3. Cottin V. Clinical genetics for the pulmonologist: introduction. Respiration. 2007; 74:3-7.10.1159/00009683217190998Search in Google Scholar

4. Rowe S, Miller S, Sorscher E. Cystic fibrosis. N Engl J Med. 2005; 352:1992-2001.10.1056/NEJMra04318415888700Search in Google Scholar

5. Choe Y, Ko J, Seo J, Han J, Shim J, Koh Y, et al. Novel CFTR mutations in a Korean infant with cystic fibrosis and pancreatic insufficiency. J Korean Med Sci. 2010; 25:163-5.10.3346/jkms.2010.25.1.163280001520052365Open DOISearch in Google Scholar

6. Collins F. Genetics terminology for respiratory physicians. Paediatr Respir Rev. 2009; 10:124-33.10.1016/j.prrv.2009.04.00319651383Open DOISearch in Google Scholar

7. Fu J, Festen EA, Wijmenga C. Multi-ethnic studies in complex traits. Hum Mol Genet. 2011; 20:R206-13.10.1093/hmg/ddr386317938421890495Open DOISearch in Google Scholar

8. Ober C, Hoffjan S. Asthma genetics 2006: the long and winding road to gene discovery. Genes Immun. 2006; 7:95-100.10.1038/sj.gene.636428416395390Open DOISearch in Google Scholar

9. Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007; 448:470-3.10.1038/nature0601417611496Search in Google Scholar

10. Leung TF, Sy HY, Ng MC, Chan IH, Wong GW, Tang NL, et al. Asthma and atopy are associated with chromosome 17q21 markers in Chinese children. Allergy. 2009; 64:621-8.10.1111/j.1398-9995.2008.01873.x19175592Search in Google Scholar

11. Tamari M, Tomita K, Hirota T. Genome-wide association studies of asthma. Allergol Int. 2011; 60: 247-52.10.2332/allergolint.11-RAI-032021681015Open DOISearch in Google Scholar

12. Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am J Hum Genet. 2009; 84:581-93.10.1016/j.ajhg.2009.04.006268101019426955Search in Google Scholar

13. Boezen HM. Genome-wide association studies: what do they teach us about asthma and chronic obstructive pulmonary disease? Proc Am Thorac Soc. 2009; 6: 701-3.10.1513/pats.200907-058DP20008879Open DOISearch in Google Scholar

14. Kabesch M. Novel asthma-associated genes from genome-wide association studies: what is their significance? Chest. 2010; 137:909-15.10.1378/chest.09-155420371526Open DOISearch in Google Scholar

15. Mak JC. Pathogenesis of COPD. Part II. Oxidativeantioxidative imbalance. Int J Tuberc Lung Dis. 2008; 12:368-74.Search in Google Scholar

16. Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung Dis. 2008; 12:361-7.Search in Google Scholar

17. Roth M. Pathogenesis of COPD. Part III. Inflammation in COPD. Int J Tuberc Lung Dis. 2008; 12:375-80.Search in Google Scholar

18. Teramoto S. 1. COPD pathogenesis from the viewpoint of risk factors. Intern Med. 2007; 46:77-9.10.2169/internalmedicine.46.177517220602Search in Google Scholar

19. Postma DS, Boezen HM. Rationale for the Dutch hypothesis. Allergy and airway hyperresponsiveness as genetic factors and their interaction with environment in the development of asthma and COPD. Chest. 2004; 126:96S-104S; discussion 59S-61S.10.1378/chest.126.2_suppl_1.96S15302769Search in Google Scholar

20. Seifart C, Plagens A. Genetics of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2007; 2:541-50.Search in Google Scholar

21. Wood AM, Stockley RA. Alpha one antitrypsin deficiency: from gene to treatment. Respiration. 2007; 74:481-92.10.1159/00010553617671403Open DOISearch in Google Scholar

22. Janciauskiene SM, Bals R, Koczulla R, Vogelmeier C, Kohnlein T, Welte T. The discovery of alpha1- antitrypsin and its role in health and disease. Respir Med. 2011.10.1016/j.rmed.2011.02.00221367592Search in Google Scholar

23. Putra AC, Tanimoto K, Arifin M, Antariksa B, Hiyama K. Genetic variations in detoxification enzymes and HIF-1α in Japanese patients with COPD. Clin Respir J. in press.Search in Google Scholar

24. Ishii T, Matsuse T, Teramoto S, Matsui H, Miyao M, Hosoi T, et al. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax. 1999; 54:693-6.10.1136/thx.54.8.693174553510413721Open DOISearch in Google Scholar

25. Sundberg K, Johansson AS, Stenberg G, Widersten M, Seidel A, Mannervik B, et al. Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis. 1998; 19: 433-6.10.1093/carcin/19.3.4339525277Search in Google Scholar

26. Yoshikawa M, Hiyama K, Ishioka S, Maeda H, Maeda A, Yamakido M. Microsomal epoxide hydrolase genotypes and chronic obstructive pulmonary disease in Japanese. Int J Mol Med. 2000; 5:49-53.10.3892/ijmm.5.1.4910601573Search in Google Scholar

27. Matera MG, Calzetta L, Cazzola M. TNF-alpha inhibitors in asthma and COPD: we must not throw the baby out with the bath water. Pulm Pharmacol Ther. 2010; 23:121-8.10.1016/j.pupt.2009.10.00719853667Open DOISearch in Google Scholar

28. Zhan P, Wang J, Wei SZ, Qian Q, Qiu LX, Yu LK, et al. TNF-308 gene polymorphism is associated with COPD risk among Asians: meta-analysis of data for 6,118 subjects. Mol Biol Rep. 2011; 38:219-27.10.1007/s11033-010-0098-y20364405Search in Google Scholar

29. Zhang S, Wang C, Xi B, Li X. Association between the tumour necrosis factor-alpha -308G/A polymorphism and chronic obstructive pulmonary disease: An update. Respirology. 2010.10.1111/j.1440-1843.2010.01879.x20946339Search in Google Scholar

30. Gan WQ, Man SF, Senthilselvan A, Sin DD. Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis. Thorax. 2004; 59:574-80.10.1136/thx.2003.019588174707015223864Open DOISearch in Google Scholar

31. Obeidat M, Wain LV, Shrine N, Kalsheker N, Soler Artigas M, Repapi E, et al.A comprehensive evaluation of potential lung function associated genes in the SpiroMeta general population sample. PLoS One. 2011; 6:e19382.10.1371/journal.pone.0019382309883921625484Open DOISearch in Google Scholar

32. Artigas MS, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet. 2011; 43:1082-90.10.1038/ng.941326737621946350Search in Google Scholar

33. Soler Artigas M, Wain LV, Repapi E, Obeidat M, Sayers I, Burton PR, et al. Effect of five genetic variants associated with lung function on the risk of chronic obstructive lung disease, and their joint effects on lung function. Am J Respir Crit Care Med. 2011; 184:786-95.10.1164/rccm.201102-0192OC339841621965014Search in Google Scholar

34. Pillai SG, Kong X, Edwards LD, Cho MH, Anderson WH, Coxson HO, et al. Loci identified by genomewide association studies influence different diseaserelated phenotypes in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010; 182: 1498-505.10.1164/rccm.201002-0151OC302993620656943Open DOISearch in Google Scholar

35. Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, et al. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet. 2011.Search in Google Scholar

36. Wang Y, Yang H, Li L, Wang H, Zhang C, Yin G, et al. Association between CYP2E1 genetic polymorphisms and lung cancer risk: a meta-analysis. Eur J Cancer. 2010; 46:758-64.10.1016/j.ejca.2009.12.01020031389Open DOISearch in Google Scholar

37. Hu Z, Wei Q, Wang X, Shen H. DNA repair gene XPD polymorphism and lung cancer risk: a meta-analysis. Lung Cancer. 2004; 46:1-10.10.1016/j.lungcan.2004.03.016Open DOISearch in Google Scholar

38. Hsu NY, Wang HC, Wang CH, Chang CL, Chiu CF, Lee HZ, et al. Lung cancer susceptibility and genetic polymorphism of DNA repair gene XRCC4 in Taiwan. Cancer Biomark. 2009; 5:159-65.10.3233/CBM-2009-0617Open DOISearch in Google Scholar

39. Piao JM, Kim HN, Song HR, Kweon SS, Choi JS, Yun WJ, et al. p53 codon 72 polymorphism and the risk of lung cancer in a Korean population. Lung Cancer. 2011.10.1016/j.lungcan.2010.12.017Search in Google Scholar

40. Lind H, Zienolddiny S, Ryberg D, Skaug V, Phillips DH, Haugen A. Interleukin 1 receptor antagonist gene polymorphism and risk of lung cancer: a possible interaction with polymorphisms in the interleukin 1 beta gene. Lung Cancer. 2005; 50:285-90.10.1016/j.lungcan.2005.07.003Search in Google Scholar

41. Putra AC, Tanimoto K, Arifin M, Hiyama K. Hypoxia inducible factor-1alpha polymorphisms are associated with genetic aberrations in lung cancer. Respirology. 2011.10.1111/j.1440-1843.2011.01972.xSearch in Google Scholar

42. Tanimoto K, Yoshiga K, Eguchi H, Kaneyasu M, Ukon K, Kumazaki T, et al. Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis. 2003; 24:1779-83.10.1093/carcin/bgg132Search in Google Scholar

43. Arifin M, Tanimoto K, Putra AC, Hiyama E, Nishiyama M, Hiyama K. Carcinogenesis and cellular immortalization without persistent inactivation of p16/ Rb pathway in lung cancer. Int J Oncol. 2010; 36: 1217-27.Search in Google Scholar

44. Young RP, Hopkins RJ, Whittington CF, Hay BA, Epton MJ, Gamble GD. Individual and cumulative effects of GWAS susceptibility loci in lung cancer: associations after sub-phenotyping for COPD. PLoS One. 2011; 6:e16476.10.1371/journal.pone.0016476Open DOISearch in Google Scholar

45. Bernhardt WM, Warnecke C, Willam C, Tanaka T, Wiesener MS, Eckardt KU. Organ protection by hypoxia and hypoxia-inducible factors. Methods Enzymol. 2007; 435:221-45.10.1016/S0076-6879(07)35012-XSearch in Google Scholar

46. Semenza GL. Involvement of hypoxia-inducible factor 1 in human cancer. Intern Med. 2002; 41:79-83.10.2169/internalmedicine.41.7911868612Search in Google Scholar

47. Koukourakis MI, Papazoglou D, Giatromanolaki A, Panagopoulos I, Maltezos E, Harris AL, et al. C2028T polymorphism in exon 12 and dinucleotide repeat polymorphism in intron 13 of the HIF-1alpha gene define HIF-1alpha protein expression in non-small cell lung cancer. Lung Cancer. 2006; 53:257-62.10.1016/j.lungcan.2006.05.02516837101Search in Google Scholar

48. Kim HO, Jo YH, Lee J, Lee SS, Yoon KS. The C1772T genetic polymorphism in human HIF-1alpha gene associates with expression of HIF-1alpha protein in breast cancer. Oncol Rep. 2008; 20:1181-7.Search in Google Scholar

49. Ollerenshaw M, Page T, Hammonds J, Demaine A. Polymorphisms in the hypoxia inducible factor-1alpha gene (HIF1A) are associated with the renal cell carcinoma phenotype. Cancer Genet Cytogenet. 2004; 153:122-6.10.1016/j.cancergencyto.2004.01.01415350301Open DOISearch in Google Scholar

50. Kuwai T, Kitadai Y, Tanaka S, Kuroda T, Ochiumi T, Matsumura S, et al. Single nucleotide polymorphism in the hypoxia-inducible factor-1alpha gene in colorectal carcinoma. Oncol Rep. 2004; 12:1033-7.Search in Google Scholar

51. Konac E, Onen HI, Metindir J, Alp E, Biri AA, Ekmekci A. An investigation of relationships between hypoxia-inducible factor-1 alpha gene polymorphisms and ovarian, cervical and endometrial cancers. Cancer Detect Prev. 2007; 31:102-9.10.1016/j.cdp.2007.01.00117418979Open DOISearch in Google Scholar

52. American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am J Respir Crit Care Med. 2000; 161:646-64. 10.1164/ajrccm.161.2.ats3-0010673212Search in Google Scholar

53. Lawson W, Loyd J. The genetic approach in pulmonary fibrosis: can it provide clues to this complex disease? Proc Am Thorac Soc. 2006; 3:345-9.10.1513/pats.200512-137TK265868616738199Open DOISearch in Google Scholar

54. Garcia CK. Idiopathic pulmonary fibrosis: update on genetic discoveries. Proc Am Thorac Soc. 2011; 8: 158-62.10.1513/pats.201008-056MS313183321543794Open DOISearch in Google Scholar

55. Calado RT, Young NS. Telomere diseases. N Engl J Med. 2009; 361:2353-65.10.1056/NEJMra0903373340158620007561Search in Google Scholar

56. Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008; 88:557-79.10.1152/physrev.00026.200718391173Open DOISearch in Google Scholar

57. Alder JK, Chen JJ, Lancaster L, Danoff S, Su SC, Cogan JD, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci U S A. 2008; 105:13051-6.10.1073/pnas.0804280105252910018753630Open DOISearch in Google Scholar

58. Cronkhite JT, Xing C, Raghu G, Chin KM, Torres F, Rosenblatt RL, et al. Telomere shortening in familial and sporadic pulmonary fibrosis. Am J Respir Crit Care Med. 2008; 178:729-37.10.1164/rccm.200804-550OC255645518635888Open DOISearch in Google Scholar

59. Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, et al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med. 2007; 356:1317-26.10.1056/NEJMoa06615717392301Open DOISearch in Google Scholar

60. Diaz de Leon A, Cronkhite JT, Katzenstein AL, Godwin JD, Raghu G, Glazer CS, et al. Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLoS One. 2010; 5:e10680.10.1371/journal.pone.0010680Open DOISearch in Google Scholar

61. World Health Organization. Global tuberculosis control: surveillance, planning, financing. WHO report. 2008.Search in Google Scholar

62. World Health Organization. Policy Statement: Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Geneva, World Health Organization; 2008.Search in Google Scholar

63. Palomino JC. Molecular detection, identification and drug resistance detection in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol. 2009; 56: 103-11.10.1111/j.1574-695X.2009.00555.xOpen DOISearch in Google Scholar

64. Ling DI, Zwerling AA, Pai M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J. 2008; 32: 1165-74.10.1183/09031936.00061808Open DOISearch in Google Scholar

65. Morgan M, Kalantri S, Flores L, Pai M. A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2005; 5:62.10.1186/1471-2334-5-62Open DOISearch in Google Scholar

66. Prayle A, Atkinson M, Smyth A. Pneumonia in the developed world. Paediatr Respir Rev. 2011; 12:60-9.10.1016/j.prrv.2010.09.012Open DOISearch in Google Scholar

67. Mitchell AM, Mitchell TJ. Streptococcus pneumoniae: virulence factors and variation. Clin Microbiol Infect. 2010; 16:411-8.10.1111/j.1469-0691.2010.03183.xOpen DOISearch in Google Scholar

68. Preston JA, Dockrell DH. Virulence factors in pneumococcal respiratory pathogenesis. Future Microbiol. 2008; 3:205-21.10.2217/17460913.3.2.205Open DOISearch in Google Scholar

69. Mitchell TJ. Virulence factors and the pathogenesis of disease caused by Streptococcus pneumoniae. Res Microbiol. 2000; 151:413-9.10.1016/S0923-2508(00)00175-3Search in Google Scholar

70. Ohlenschlaeger T, Garred P, Madsen HO, Jacobsen S. Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. N Engl J Med. 2004; 351:260-7.10.1056/NEJMoa03312215254284Search in Google Scholar

71. Rantala A, Lajunen T, Juvonen R, Bloigu A, Silvennoinen-Kassinen S, Peitso A, et al. Mannosebinding lectin concentrations, MBL2 polymorphisms, and susceptibility to respiratory tract infections in young men. J Infect Dis. 2008; 198:1247-53.10.1086/59191218729778Search in Google Scholar

72. Garcia-Laorden MI, Sole-Violan J, Rodriguez de Castro F, Aspa J, Briones ML, Garcia-Saavedra A, et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J Allergy Clin Immunol. 2008; 122:368-74, 74 e1-2.10.1016/j.jaci.2008.05.037Open DOISearch in Google Scholar

73. Ruskamp JM, Hoekstra MO, Postma DS, Kerkhof M, Bottema RW, Koppelman GH, et al. Polymorphisms in the mannan-binding lectin gene are not associated with questionnaire-reported respiratory tract infections in children. J Infect Dis. 2008; 198:1707-13.10.1086/592989Search in Google Scholar

74. Keynan Y, Juno J, Meyers A, Ball TB, Kumar A, Rubinstein E, et al. Chemokine receptor 5 big up tri, open32 allele in patients with severe pandemic (H1N1) 2009. Emerg Infect Dis. 2010; 16:1621-2.10.3201/eid1610.100108Search in Google Scholar

75. Dawson TC, Beck MA, Kuziel WA, Henderson F, Maeda N. Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol. 2000; 156:1951-9.10.1016/S0002-9440(10)65068-7Open DOISearch in Google Scholar

76. Qin G, Liu Y, Zheng J, Ng IH, Xiang Z, Lam KT, et al. Type 1 responses of human Vgamma9Vdelta2 T cells to influenza A viruses. J Virol. 2011; 85:10109-16.10.1128/JVI.05341-11319640821752902Open DOISearch in Google Scholar

77. Hall IP. Pharmacogenetics, pharmacogenomics and airway disease. Respir Res. 2002;3:10.10.1186/rr1596480811806845Open DOISearch in Google Scholar

78. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet. 1999; 56:247-58.10.1034/j.1399-0004.1999.560401.x10636440Open DOISearch in Google Scholar

79. Taylor DR, Kennedy MA. Genetic variation of the beta(2)-adrenoceptor: its functional and clinical importance in bronchial asthma. Am J Pharmacogenomics. 2001; 1:165-74.10.2165/00129785-200101030-0000212083965Open DOISearch in Google Scholar

80. Andarini S, Kikuchi T, Nukiwa M, Pradono P, Suzuki T, Ohkouchi S, et al. Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res. 2004; 64:3281-7.10.1158/0008-5472.CAN-03-391115126371Search in Google Scholar

81. Vachani A, Moon E, Wakeam E, Albelda SM. Gene therapy for mesothelioma and lung cancer. Am J Respir Cell Mol Biol. 2010; 42:385-93.10.1165/rcmb.2010-0026RT20160042Open DOISearch in Google Scholar

82. Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. Hum Mol Genet. 2010; 19:111-21.10.1093/hmg/ddp47119819884Open DOISearch in Google Scholar

83. Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature. 2002; 418:426-30.10.1038/nature0087812110844Search in Google Scholar

84. Allen M, Heinzmann A, Noguchi E, Abecasis G, Broxholme J, Ponting CP, et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat Genet. 2003; 35:258-63.10.1038/ng125614566338Search in Google Scholar

85. Laitinen T, Polvi A, Rydman P, Vendelin J, Pulkkinen V, Salmikangas P, et al. Characterization of a common susceptibility locus for asthma-related traits. Science. 2004; 304:300-4.10.1126/science.109001015073379Open DOISearch in Google Scholar

86. Zhang Y, Leaves NI, Anderson GG, Ponting CP, Broxholme J, Holt R, et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat Genet. 2003; 34:181-6.10.1038/ng116612754510Open DOISearch in Google Scholar

87. Nicolae D, Cox NJ, Lester LA, Schneider D, Tan Z, Billstrand C, et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am J Hum Genet. 2005; 76:349-57.10.1086/427763119638015611928Open DOISearch in Google Scholar

88. Putra AC, Tanimoto K, Arifin M, Antariksa B, Hiyama K. Genetic variations in detoxification enzymes and HIF-1alpha in Japanese patients with COPD. Clin Respir J. 2011. DOI: 10.1111/j.1752-699X.2011.00255.x10.1111/j.1752-699X.2011.00255.x21651746Open DOISearch in Google Scholar

89. Smolonska J, Wijmenga C, Postma DS, Boezen HM. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years’ research. Am J Respir Crit Care Med. 2009; 180: 618-31.10.1164/rccm.200905-0722OC19608716Open DOISearch in Google Scholar

90. Sapey E, Wood AM, Ahmad A, Stockley RA. Tumor necrosis factor-{alpha} rs361525 polymorphism is associated with increased local production and downstream inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010; 182:192-9.10.1164/rccm.200912-1846OC20299531Open DOISearch in Google Scholar

91. van Moorsel CH, van Oosterhout MF, Barlo NP, de Jong PA, van der Vis JJ, Ruven HJ, et al. Surfactant protein C mutations are the basis of a significant portion of adult familial pulmonary fibrosis in a dutch cohort. Am J Respir Crit Care Med. 2010; 182:1419-25.10.1164/rccm.200906-0953OC20656946Search in Google Scholar

92. Pantelidis P, Fanning GC, Wells AU, Welsh KI, Du Bois RM. Analysis of tumor necrosis factor-alpha, lymphotoxin-alpha, tumor necrosis factor receptor II, and interleukin-6 polymorphisms in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2001; 163:1432-6.10.1164/ajrccm.163.6.200606411371414Open DOISearch in Google Scholar

93. Morrison CD, Papp AC, Hejmanowski AQ, Addis VM, Prior TW. Increased D allele frequency of the angiotensin-converting enzyme gene in pulmonary fibrosis. Hum Pathol. 2001; 32:521-8.10.1053/hupa.2001.2432111381371Open DOISearch in Google Scholar

94. Grutters JC, du Bois RM. Genetics of fibrosing lung diseases. Eur Respir J. 2005; 25:915-27.10.1183/09031936.05.0013340415863652Open DOISearch in Google Scholar

95. Shi X, Zhou S, Wang Z, Zhou Z. CYP1A1 and GSTM1 polymorphisms and lung cancer risk in Chinese populations: a meta-analysis. Lung Cancer. 2008; 59: 155-63.10.1016/j.lungcan.2007.08.00417900751Open DOISearch in Google Scholar

96. Lee KM, Kang D, Clapper ML, Ingelman-Sundberg M, Ono-Kihara M, Kiyohara C, et al. CYP1A1, GSTM1, and GSTT1 polymorphisms, smoking, and lung cancer risk in a pooled analysis among Asian populations. Cancer Epidemiol Biomarkers Prev. 2008; 17:1120-6.10.1158/1055-9965.EPI-07-278618463401Open DOISearch in Google Scholar

97. Gresner P, Gromadzinska J, Wasowicz W. Polymorphism of selected enzymes involved in detoxification and biotransformation in relation to lung cancer. Lung Cancer. 2007; 57:1-25.10.1016/j.lungcan.2007.02.00217337085Open DOISearch in Google Scholar

98. Li X, Hu Z, Qu X, Zhu J, Li L, Ring BZ, et al. Putative EPHX1 Enzyme Activity Is Related with Risk of Lung and Upper Aerodigestive Tract Cancers: A Comprehensive Meta-Analysis. PLoS One. 2011; 6:e14749.10.1371/journal.pone.0014749306080921445251Open DOISearch in Google Scholar

99. Taioli E, Benhamou S, Bouchardy C, Cascorbi I, Cajas-Salazar N, Dally H, et al. Myeloperoxidase G-463A polymorphism and lung cancer: a HuGE genetic susceptibility to environmental carcinogens pooled analysis. Genet Med. 2007; 9:67-73.10.1097/GIM.0b013e31803068b117304047Open DOISearch in Google Scholar

100. Okazaki I, Sugita M, Matsuki H, Billah SM, Watanabe T. Additional candidates to conventional genes susceptible for lung cancer and changing trend in Japan. Oncol Rep. 2010; 23:1493-500.10.3892/or_0000078820428802Search in Google Scholar

101. Chao C, Zhang ZF, Berthiller J, Boffetta P, Hashibe M. NAD(P)H:quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancers: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006; 15:979-87.10.1158/1055-9965.EPI-05-089916702380Open DOISearch in Google Scholar

102. Langevin SM, Ioannidis JP, Vineis P, Taioli E. Assessment of cumulative evidence for the association between glutathione S-transferase polymorphisms and lung cancer: application of the Venice interim guidelines. Pharmacogenet Genomics. 2010; 20:586-97.10.1097/FPC.0b013e32833c3892294099220729793Open DOISearch in Google Scholar

103.Wang Y, Yang H, Li L, Wang H. Glutathione Stransferase T1 gene deletion polymorphism and lung cancer risk in Chinese population: a meta-analysis. Cancer Epidemiol. 2010; 34:593-7.10.1016/j.canep.2010.05.00820542754Open DOISearch in Google Scholar

104. Ye Z, Song H, Higgins JP, Pharoah P, Danesh J. Five glutathione s-transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. PLoS Med. 2006; 3:e91.10.1371/journal.pmed.0030091139198116509765Search in Google Scholar

105. Miller DP, Asomaning K, Liu G, Wain JC, Lynch TJ, Neuberg D, et al. An association between glutathione S-transferase P1 gene polymorphism and younger age at onset of lung carcinoma. Cancer. 2006; 107: 1570-7.10.1002/cncr.2212416933328Search in Google Scholar

106. Miller DP, De Vivo I, Neuberg D, Wain JC, Lynch TJ, Su L, et al. Association between self-reported environmental tobacco smoke exposure and lung cancer: modification by GSTP1 polymorphism. Int J Cancer. 2003; 104:758-63.10.1002/ijc.1098912640684Open DOISearch in Google Scholar

107. Zhang J, Gu SY, Zhang P, Jia Z, Chang JH. ERCC2 Lys751Gln polymorphism is associated with lung cancer among Caucasians. Eur J Cancer. 2010; 46: 2479-84.10.1016/j.ejca.2010.05.00820627704Open DOISearch in Google Scholar

108. Kiyohara C, Takayama K, Nakanishi Y. Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer. 2006; 54:267-83.10.1016/j.lungcan.2006.08.00916982113Open DOISearch in Google Scholar

109.Wang Y, Yang H, Li H, Li L, Wang H, Liu C, et al. Association between X-ray repair cross complementing group 1 codon 399 and 194 polymorphisms and lung cancer risk: a meta-analysis. Cancer Lett. 2009; 285:134-40.10.1016/j.canlet.2009.05.00519481337Search in Google Scholar

110.Wei B, Zhou Y, Xu Z, Xi B, Cheng H, Ruan J, et al. The effect of hOGG1 Ser326Cys polymorphism on cancer risk: evidence from a meta-analysis. PLoS One. 2011; 6:e27545.10.1371/journal.pone.0027545321967822114677Search in Google Scholar

111. Yan L, Zhang D, Chen C, Mao Y, Xie Y, Li Y, et al. TP53 Arg72Pro polymorphism and lung cancer risk: a meta-analysis. Int J Cancer. 2009; 125:2903-11.10.1002/ijc.2460319623649Search in Google Scholar

112. Dai S, Mao C, Jiang L, Wang G, Cheng H. P53 polymorphism and lung cancer susceptibility: a pooled analysis of 32 case-control studies. Hum Genet. 2009; 125:633-8.10.1007/s00439-009-0664-319357867Open DOISearch in Google Scholar

113. Hu Z, Li X, Qu X, He Y, Ring BZ, Song E, et al. Intron 3 16 bp duplication polymorphism of TP53 contributes to cancer susceptibility: a meta-analysis. Carcinogenesis. 2010; 31:643-7.10.1093/carcin/bgq01820089604Search in Google Scholar

114. Fong KM, Sekido Y, Gazdar AF, Minna JD. Lung cancer. 9: Molecular biology of lung cancer: clinical implications. Thorax. 2003; 58:892-900.10.1136/thorax.58.10.892174648914514947Open DOISearch in Google Scholar

115. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008; 359:1367-80.10.1056/NEJMra080271418815398Search in Google Scholar

116. Sato M, Shames DS, Gazdar AF, Minna JD. A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol. 2007; 2:327-43.10.1097/01.JTO.0000263718.69320.4c17409807Open DOISearch in Google Scholar

117. Minna JD, Fong K, Zochbauer-Muller S, Gazdar AF. Molecular pathogenesis of lung cancer and potential translational applications. Cancer J. 2002; 8 Suppl 1: S41-6.Search in Google Scholar

118. Hiyama K, Hiyama E. Detection of telomerase activity in lung cancer tissues. Methods Mol Med. 2003; 74: 401-12. Search in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine