Cite

1. Dallon JC, Ehrlich HP. A review of fibroblast collagen lattices. Wound Repair Regen. 2008; 16:472-9.10.1111/j.1524-475X.2008.00392.xOpen DOISearch in Google Scholar

2. Friess W. Collagen-biomaterial for drug delivery. Eur J Pharm Biopharm. 1998; 45:113-36.10.1016/S0939-6411(98)00017-4Open DOISearch in Google Scholar

3. Lynn IVY, Bonfield W. Antigenicity and immunogenicity of collagen. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2004; 71B: 343-54.10.1002/jbm.b.30096Search in Google Scholar

4. O’Leary R, Wood E. A novel in vitro dermal woundhealing model incorporating a response to mechanical wounding and repopulation of a fibrin provisional matrix. In Vitro Cellular & Developmental Biology- Animal. 2003; 39:204-7.10.1290/1543-706X(2003)039<0204:ANIVDW>2.0.CO;2Open DOISearch in Google Scholar

5. Hsu FY, Chueh SC, Wang YJ. Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials. 1999; 20:1931-6.10.1016/S0142-9612(99)00095-2Open DOISearch in Google Scholar

6. Huang Y-C, Wang T-W, Sun J-S, Lin F-H. Epidermal morphogenesis in an in-vitro model using a fibroblastsembedded collagen scaffold. Journal of Biomedical Science. 2005; 12:855-67.10.1007/s11373-005-9018-xOpen DOISearch in Google Scholar

7. Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M, et al. Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials. 2004; 25:2831-41.10.1016/j.biomaterials.2003.09.066Open DOISearch in Google Scholar

8. Shanmugasundaram N, Ravikumar T, Babu M. Comparative physico-chemical and in vitro properties of fibrillated collagen scaffolds from different sources. J Biomater Appl. 2004; 18:247-6410.1177/0885328204040945Open DOISearch in Google Scholar

9. Bell E, Ivarsson B, Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A. 1979; 76:1274-8.10.1073/pnas.76.3.1274Open DOISearch in Google Scholar

10. Zeugolis DI, Paul RG, Attenburrow G. Factors influencing the properties of reconstituted collagen fibers prior to self-assembly: animal species and collagen extraction method. J Biomed Mater Res A. 2008; 86:892-904.10.1002/jbm.a.31694Open DOISearch in Google Scholar

11. Pieper JS, Oosterhof A, Dijkstra PJ, Veerkamp JH, van Kuppevelt TH. Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate. Biomaterials. 1999; 20:847-58.10.1016/S0142-9612(98)00240-3Open DOISearch in Google Scholar

12. Rajan N, Habermehl J, Cote M-F, Doillon CJ, Mantovani D. Prep aration o f read y-to -use, storab le and reconstituted type I collagen from rat-tail tendon for tissue engineering applications. Nat Protocols. 2007; 1:2753-58.10.1038/nprot.2006.430Open DOISearch in Google Scholar

13. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227:680-5.10.1038/227680a0Open DOISearch in Google Scholar

14. Piboonniyom SO, Timmermann S, Hinds P, Munger K. Aberrations in the MTS1 tumor suppressor locus in oral squamous cell carcinoma lines preferentially affect the INK4A gene and result in increased cdk6 activity. Oral Oncol. 2002; 38:179-86.10.1016/S1368-8375(01)00042-2Open DOISearch in Google Scholar

15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65: 55-63.10.1016/0022-1759(83)90303-4Open DOISearch in Google Scholar

16. Lin YK, Liu DC. Comparison of physical-chemical properties of type I collagen from different species. Food Chemistry. 2006; 99:244-51.10.1016/j.foodchem.2005.06.053Open DOISearch in Google Scholar

17. O’Brien FJ, Harley BA, Yannas IV, Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials. 2004; 25: 1077-86.10.1016/S0142-9612(03)00630-6Open DOISearch in Google Scholar

18. Berthod F, Saintigny G, Chretien F, Hayek D, Collombel C, Damour O. Optimization of thickness, pore size and mechanical properties of a biomaterial designed for deep burn coverage. Clin Mater. 1994; 15:259-65.10.1016/0267-6605(94)90055-8Open DOISearch in Google Scholar

19. Lee JE, Park JC, Hwang YS, Kim JK, Kim JG, Sub H. Characterization of UV-irradiated dense/porous co llag en me mb ran es: mo rpho log y, enzy mat ic degradation, and mechanical properties. Yonsei Med J. 2001; 42:172-9.10.3349/ymj.2001.42.2.172Open DOISearch in Google Scholar

20. Faraj KA, van Kuppevelt TH, Daamen WF. Construction of collagen scaffolds that mimic the three-dimensional architecture of specific tissues. Tissue Eng. 2007; 13:2387-9410.1089/ten.2006.0320Open DOISearch in Google Scholar

21. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005; 26:433-41.10.1016/j.biomaterials.2004.02.052Open DOISearch in Google Scholar

22. Rhee S, Grinnell F. Fibroblast mechanics in 3D collagen matrices. Adv Drug Deliv Rev. 2007; 59:1299-305.10.1016/j.addr.2007.08.006Open DOISearch in Google Scholar

23. Eckes B, Zigrino P, Kessler D, Holtkotter O, Shephard P, Mauch C, et al. Fibroblast-matrix interactions in wound healing and fibrosis. Matrix Biol. 2000; 19: 325-32. 10.1016/S0945-053X(00)00077-9Open DOISearch in Google Scholar

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine