Open Access

An Overview of Design, Control, Power Management, System Stability and Reliability in Electric Ships


Cite

[1] Hansen J.F., Wendt F., History and state of the art in commercial electric ship propulsion, integrated power systems, and future trends, Proc. IEEE, 2015, 103(12), 2229–2242.10.1109/JPROC.2015.2458990Search in Google Scholar

[2] Dnanes A.K.A., Maritime electrical installations and diesel electric propulsion, ABB report/Lecture note NTNU, 2003.Search in Google Scholar

[3] Skjong E., Volden R., Rodskar E., Molinas M., Johansen T.A., Cunningham J., Past, Present, and future challenges of the marine vessel’s electrical power system, IEEE Trans. Transport. Electr., 2016, 2(4), 522–537.10.1109/TTE.2016.2552720Search in Google Scholar

[4] Sulligoi G., Vicenzutti A., Menis R., All-electric ship design. from electrical propulsion to integrated electrical and electronic power systems, IEEE Trans. Transport. Electr., 2016, 2(4), 507–521.10.1109/TTE.2016.2598078Search in Google Scholar

[5] Vicenzutti A., Bosich D., Giadrossi G., Sulligoi G., The role of voltage controls in modern all-electric ships. Toward the all electric ship, IEEE Electr. Mag., 2015, 3(2), 49–65.10.1109/MELE.2015.2413437Search in Google Scholar

[6] Chalfant J., Early-stage design for electric ship, Proc. IEEE, 2015, 103(12), 2252–2266.10.1109/JPROC.2015.2459672Search in Google Scholar

[7] Keane R.G. Jr., Reducing total ownership cost. Designing inside-out of the hull, Naval Eng. J., 2012, 124(4), 67–80.Search in Google Scholar

[8] Thurkins E.J. Jr., Development of an early stage ship design tool for rapid modeling in paramarine, Nav. E. thesis, Dept. Mech. Eng., Massachusetts Inst. Technology, Cambridge, MA, USA, 2012.Search in Google Scholar

[9] Jurkiewicz D.J., Chalfant J., Chryssostomidis C., Modular IPS machinery arrangement in early-stage naval ship design, Proc. 2013 IEEE Electric Ship Technology Symp. (ESTS), Arlington, VA, USA, 2013, 22–24.Search in Google Scholar

[10] Nestoras K., A tool to create hydrodynamically optimized hull-forms with geometrical constraints from internal arrangements, S.M. thesis, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013.Search in Google Scholar

[11] Oers B.V., Stapersma D., Hopman J.J., A 3D packing approach for the early stage configuration design of ships, V. Bertram (Ed.), Proc. Int. Conf. Computer Applications and Information Technology in the Maritime Industries (COMPIT), Gubbio, Italy, 2010, 367–381.Search in Google Scholar

[12] Doerry N.H., Clayton D.H., Shipboard electrical power quality of service, Proc. IEEE Electric Ship Technology Symp., Philadelphia, PA, USA, 2005, 274–279.10.1109/ESTS.2005.1524688Search in Google Scholar

[13] Gale P.A., The ship design process, [in:] T. Lamb (Ed.), Ship design and construction, Vol. 1, Alexandria, VA, USA, Society of Naval Architects and Marine Engineers, 2003, Ch. 5.Search in Google Scholar

[14] Mistree F., Smith W.F., Bras B., Allen J.K., Muster D., Decision based design. A contemporary paradigm for ship design, Trans. Society of Naval Architects and Marine Engineers, 1990, 98, 565–597.Search in Google Scholar

[15] Chalfant J., Ferrante M., Chryssostomidis C., Design of a notional ship for use in the development of early-stage design tools, [in:] Proc. 2015 IEEE Electric Ship Technology Symposium (ESTS), Alexandria, VA, USA, June 22–24, 2015, 239–244.Search in Google Scholar

[16] Brown A., Salcedo J., Multiple-objective optimization in naval ship design, Naval Eng. J., 2003, 115(4), 49–61.10.1111/j.1559-3584.2003.tb00242.xSearch in Google Scholar

[17] Stepanchick J., Brown A., Revisiting DDGX/DDG-51 concept exploration, Naval Eng. J., 2007, 119(3), 67–88.10.1111/j.1559-3584.2007.00069.xSearch in Google Scholar

[18] Ali H., Dougal R., Ouroua A., Hebner R., Steurer M., Andrus M., Langston J., Schoder K., Hovsapian R., Cross-platform validation of notional baseline architecture models of naval electric ship power systems, Proc. IEEE Electric Ship Technology Symp., ESTS, Alexandria, VA, USA, 2011, 78–83.10.1109/ESTS.2011.5770845Search in Google Scholar

[19] Wang Z., Wang X., Cao J., Cheng M., Hu Y., Direct torque control of T-NPC inverters-fed double-stator-winding PMSM drives with SVM, IEEE Trans. Power Electron., 2018, 33(2), 1541–1553.10.1109/TPEL.2017.2689008Open DOISearch in Google Scholar

[20] Wu P.-H., Chen Y.-T., Cheng P.-T., The delta-connected cascaded H-bridge converter application in distributed energy resources and fault ride through capability analysis, IEEE Trans. Ind. Appl., 2017, 53(5), 4665–4672.10.1109/TIA.2017.2702110Search in Google Scholar

[21] Jankovic M., Costabeber A., Watson A., Clare J.C., Arm-balancing control and experimental validation of a grid-connected MMC with pulsed DC load, IEEE Trans. Ind. Electron., 2017, 64(12), 9180–9190.10.1109/TIE.2017.2711516Open DOISearch in Google Scholar

[22] Quan Z., Li Y., Harmonic analysis of interleaved voltage source converters and tri-carrier PWM strategies for three-level converters, 18th Workshop on Control and Modeling for Power Electronics (COMPEL), IEEE, Stanford, CA, USA, 2017, 1–7.10.1109/COMPEL.2017.8013285Search in Google Scholar

[23] Liu H., Zhang D., Wang D., Design considerations for output capacitance under inductance mismatches in multiphase buck converters, IEEE Trans. Power Electron., 2017, 32(7), 5004–5015.10.1109/TPEL.2016.2605700Open DOISearch in Google Scholar

[24] Ariff E.A.R.E., Dordevic O., Jones M., A space vector PWM technique for a three-level symmetrical six-phase drive, IEEE Trans. Ind. Electron., 2017, 64(11), 8396–8405.10.1109/TIE.2017.2703668Open DOISearch in Google Scholar

[25] Ma H., Chen G., Yi J.H., Meng Q.W., Zhang L., Xu J.P., A single-stage PFM-APWM hybrid modulated soft-switched converter with low bus voltage for high-power LED lighting applications, IEEE Trans. Ind. Electron., 2017, 64(7), 5777–5788.10.1109/TIE.2017.2652361Search in Google Scholar

[26] Ericsen T., Hingorani N., Khersonsky Y., PEBB – power electronics building blocks. From concept to reality, Petroleum and Chemical Industry Conference, 2006, PCIC ’06, Proc. IEEE Industry Applications Society 53rd Annual, Philadelphia, PA, USA, 2006, 12–16.10.1109/PCICON.2006.359706Search in Google Scholar

[27] Yu J., Burgos R., Mehrabadi N.R., Boroyevich D., DC fault current control of modular multilevel converter with SiC-based power electronics building blocks, Electric Ship Technologies Symp., ESTS, IEEE, Arlington, VA, USA, 2017, 30–35.10.1109/ESTS.2017.8069256Search in Google Scholar

[28] Wang F., Zhang Z., Ericsen T., Raju R., Burgos R., Boroyevich D., Advances in power conversion and drives for shipboard systems, Proc. IEEE, 2015, 103(12), 2285–2311.10.1109/JPROC.2015.2495331Search in Google Scholar

[29] Debnath S., Qin J., Bahrani B., Saeedifard M., Barbosa P., Operation, control, and applications of the modular multilevel converter. A review, IEEE Trans. Power Electron., 2015, 30(1), 37–53.10.1109/TPEL.2014.2309937Search in Google Scholar

[30] Perez M.A., Bernet S., Rodriguez J., Kouro S., Lizana R., Circuit topologies, modeling, control schemes, and applications of modular multilevel converters, IEEE Trans. Power Electron., 2015, 30(1), 4–17.10.1109/TPEL.2014.2310127Search in Google Scholar

[31] Cuzner R.M., Soman R., Steurer M.M., Toshon T.A., Faruque M.O., Approach to scalable model development for navy shipboard compatible modular multilevel converters, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 28–39.10.1109/JESTPE.2016.2616222Open DOISearch in Google Scholar

[32] Mo R., Li H., Hybrid energy storage system with active filter function for shipboard MVDC system applications based on isolated modular multilevel DC/DC converter, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 79–87.10.1109/JESTPE.2016.2642831Open DOISearch in Google Scholar

[33] Chen Y., Zhao S., Li Z., Wei X., Kang Y., Modeling and control of the isolated DC-DC modular multilevel converter for electric ship medium voltage direct current power system, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 124–139.10.1109/JESTPE.2016.2615071Open DOISearch in Google Scholar

[34] Chen Y., Li Z., Zhao S., Wei X., Kang Y., Design and implementation of a modular multilevel converter with hierarchical redundancy ability for electric ship MVDC system, IEEE J. Emerg. Sel. Topics Power Electron., 2017, 5(1), 189–202.10.1109/JESTPE.2016.2632858Open DOISearch in Google Scholar

[35] Millan J., Godignon P., Perpina X., Perez-Tomas A., Rebollo J., A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron., 2014, 29(5), 2155–2163.10.1109/TPEL.2013.2268900Open DOISearch in Google Scholar

[36] Biela J., Schweizer M., Waffler S., Kolar J.W., SiC versus Si. Evaluation of potentials for performance improvement of inverter and DC-DC converter systems by SiC power semiconductors, IEEE Trans. Ind. Electron., 2011, 58(7), 2872–2882.10.1109/TIE.2010.2072896Open DOISearch in Google Scholar

[37] Mishra U.K., Parikh P., Wu Y.-F., AlGaN/GaN HEMTs – an overview of device operation and applications, Proc. IEEE, 2002, 90(6), 1022–1031.10.1109/JPROC.2002.1021567Search in Google Scholar

[38] Baginski T.A., Thomas K.A., A robust one-shot switch for high power pulse applications, IEEE Trans. Power Electron., 2009, 24(1), 253–259.10.1109/TPEL.2008.2005411Open DOISearch in Google Scholar

[39] Mitra P., Venayagamoorthy G.K., An adaptive control strategy for DSTATCOM applications in an electric ship power system, IEEE Trans. Power Electron., 2010, 25(1), 95–104.10.1109/TPEL.2009.2024152Search in Google Scholar

[40] Kanellos F.D., Anvari-Moghaddam A., Guerrero J.M., A cost-effective and emission-aware power management system for ships with integrated full electric propulsion, Electric Power Syst. Res., 2017, 150, 63–75.10.1016/j.epsr.2017.05.003Search in Google Scholar

[41] Skjong E., Suul J.A., Rygg A., Johansen T.A., Molinas M., System-wide harmonic mitigation in a diesel-electric ship by model predictive control, IEEE Trans. Ind. Electron., 2016, 63(7), 4008–4019.10.1109/TIE.2016.2532845Open DOISearch in Google Scholar

[42] Im W.-S., Wang C., Tan L., Liu W., Liu L., Cooperative controls for pulsed power load accommodation in a shipboard power system, IEEE Trans. Power Syst., 2016, 31(6), 5181–5189.10.1109/TPWRS.2016.2538323Open DOISearch in Google Scholar

[43] Dong D., Pan Y., Lai R., Wu X., Weeber K., Active fault-current foldback control in thyristor rectifier for DC shipboard electrical system, IEEE J. Emerg. Sel. Topics Power Electron., 5(1), 203–212, 2017.10.1109/JESTPE.2016.2640145Open DOISearch in Google Scholar

[44] Yan C., Venayagamoorthy G.K., Corzine K., Hardware implementation of an AIS-based optimal excitation controller for an electric ship, IEEE Trans. Ind. Appl., 2011, 47(2), 1060–1070.10.1109/TIA.2010.2103540Open DOISearch in Google Scholar

[45] Valle Y.D., Venayagamoorthy G.K., Mohagheghi S., Hernandez J.C., Harley R.G., Particle swarm optimization. Basic concepts, variants and applications in power systems, IEEE Trans. E, Comput., 2008, 12(2), 171–195.10.1109/TEVC.2007.896686Search in Google Scholar

[46] Yan C., Venayagamoorthy G.K., Corzine K., AIS-based coordinated and adaptive control of generator excitation systems for an electric ship, IEEE Trans. Ind. Electron., 2012, 59(8), 3102–3112.10.1109/TIE.2012.2187411Search in Google Scholar

[47] Zheng F., Wang Q., Lee T.H., Huang X., Robust PI controller design for nonlinear systems via fuzzy modeling approach, IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, 2001, 31(6), 666–675.10.1109/3468.983422Search in Google Scholar

[48] Karimi A., Feliachi A., PSO-tuned adaptive backstepping control of power systems, Proc. IEEE Power Systems Conf. Expo., 2006, 1315–1320.10.1109/PSCE.2006.296495Search in Google Scholar

[49] Mohagheghi S., Valle Y.D., Venayagamoorthy G.K., Harley R.G., A proportional-integrator type adaptive critic design-based neurocontroller for a static compensator in multimachine power systems, IEEE Trans. Ind. Electron., 54(1), 86–96, 2007.10.1109/TIE.2006.888760Search in Google Scholar

[50] Kankanala P., Srivastava S.C., Srivastava A.K., Schulz N.N., Optimal control of voltage and power in a multi-zonal MVDC shipboard power system, IEEE Trans. Power Syst., 2012, 27(2), 642–650.10.1109/TPWRS.2011.2178274Open DOISearch in Google Scholar

[51] Mashayekh S., Butler-Purry K.L., An integrated security-constrained model-based dynamic power management approach for isolated microgrids in all-electric ships, IEEE Trans. Power Syst., 2015, 30(6), 2934–2945.10.1109/TPWRS.2014.2377741Search in Google Scholar

[52] Tashakori Abkenar A., Nazari A., Jayasinghe S.D.G., Kapoor A., Negnevitsky M., Fuel cell power management using genetic expression programming in all-electric ships, IEEE Trans. En. Conv., 2017, 32(2), 779–787.10.1109/TEC.2017.2693275Search in Google Scholar

[53] Shariatzadeh F., Kumar N., Srivastava A.K., Optimal control algorithms for reconfiguration of shipboard microgrid distribution system using intelligent techniques, IEEE Trans. Ind. Appl., 2017, 53(1), 474–482.10.1109/TIA.2016.2601558Search in Google Scholar

[54] Jin Z., Sulligoi G., Cuzner R., Meng L., Vasquez J.C., Guerrero J.M., Next-generation shipboard DC power system. Introduction smart grid and DC microgrid technologies into maritime electrical networks, IEEE Electr. Mag., 2016, 4(2), 45–57.10.1109/MELE.2016.2544203Search in Google Scholar

[55] Rudraraju S.R., Srivastava A.K., Srivastava S.C., Schulz N.N., Small signal stability analysis of a shipboard MVDC power system, Proc. IEEE Electric Ship Technology Symp., 2009, 135–141.10.1109/ESTS.2009.4906506Search in Google Scholar

[56] Liu X., Li H., Wang Z., A start-up scheme for a three-stage solid-state transformer with minimized transformer current response, IEEE Trans. Power Electron., 2012, 27(12), 4832–4836.10.1109/TPEL.2012.2200047Search in Google Scholar

[57] Xu S., Huang A.Q., Burgos R., Review of solid-state transformer technologies and their application in power distribution systems, IEEE J. Emerg. Sel. Topics Power Electron., 2013, 1(3), 186–198.10.1109/JESTPE.2013.2277917Search in Google Scholar

[58] Khan M.M.S., Faruque M.O., Energy storage management for MVDC power system of all electric ship under different load conditions, Electric Ship Technologies Symposium (ESTS), 2017 IEEE, Arlington, VA, USA, 2017, 192–199.10.1109/ESTS.2017.8069280Search in Google Scholar

[59] Petersen L.J., Hoffman D.J., Borraccini J.P., Swindler S.B., Next generation power and energy. Maybe not so next generation, J. Naval Eng., 2010, 122(4), 59–74.10.1111/j.1559-3584.2010.00280.xSearch in Google Scholar

[60] Doerry N., Amy J., MVDC shipboard power system considerations for electromagnetic railguns, Proc. 6th DoD Electromagnetic Railgun Workship, Laurel, MD, USA, 2015, 15–16.Search in Google Scholar

[61] McCoy T.J., Integrated power systems. An outline of requirements and functionalities for ships, Proc. IEEE, 2015, 103(12), 2276–2284.10.1109/JPROC.2015.2480597Search in Google Scholar

[62] Sulligoi G., Tessarolo A., Benucci V., Millerani-Trapani A., Baret M., Luise F., Shipboard power generation. Design and development of a medium-voltage DC generation system, IEEE Ind. Appl. Magazine, 2013, 19(4), 47–55.10.1109/MIAS.2012.2215643Open DOISearch in Google Scholar

[63] Kanellos F.D., Prousalidis J., Tsekouras G.J., Onboard DC grid employing smart grid technology. Challenges, state of the art and future prospects, IET Electr. Syst. Transport., 2015, 5(1), 1–11.10.1049/iet-est.2013.0056Search in Google Scholar

[64] IEEE recommended practice for 1 to 35 kV medium voltage DC power systems on ships, IEEE Standards Association, 2010, https://standards.ieee.org/findstds/standard/1709-2010.htmlSearch in Google Scholar

[65] Farasat M., Arabali A., Trzynadlowski A.M., Flexible-voltage DC-bus operation for reduction of switching losses in all-electric ship power systems, IEEE Trans. Power Electron., 2014, 29(11), 6151–6161.10.1109/TPEL.2013.2297342Search in Google Scholar

[66] Su C.-L., Lin K.-L., Chen C.-J., Power flow and generator-converter schemes studies in ship MVDC distribution systems, IEEE Trans. Ind. Appl., 2016, 52(1), 50–59.10.1109/TIA.2015.2463795Search in Google Scholar

[67] Seenumani G., Sun J., Peng H., Real-time power management of integrated power systems in all electric ships leveraging multi time scale property, IEEE Trans. Control Syst. Technology, 2011, 232–240.10.1109/TCST.2011.2107909Search in Google Scholar

[68] Seenumani G., Sun J., Peng H., A numerically efficient iterative procedure for hybrid power system optimization using sensitivity functions, Proc. American Control Conf., 2007, 4738–4743.10.1109/ACC.2007.4282890Search in Google Scholar

[69] Feng X., Butler-Purry K.L., Zourntos T., Multi-agent system-based real-time load management for all-electric ship power systems in DC zone level, IEEE Trans. Power Syst., 2012, 27(4), 1719–1728.10.1109/TPWRS.2012.2194314Search in Google Scholar

[70] Feng X., Butler-Purry K.L., Zourntos T., A Multi-agent system framework for real-time electric load management in MVAC all-electric ship power systems, IEEE Trans. Power Syst., 2015, 30(3), 1327–1336.10.1109/TPWRS.2014.2340393Search in Google Scholar

[71] Kanellos F.D., Optimal power management with GHG emissions limitation in all-electric ship power systems comprising energy storage systems, IEEE Trans. Power Syst., 2014, 29(1), 330–339.10.1109/TPWRS.2013.2280064Search in Google Scholar

[72] Kanellos F.D., Tsekouras G.J., Hatziargyriou N.D., Optimal demand-side management and power generation scheduling in an all-electric ship, IEEE Trans. Sust. En., 2014, 5(4), 1166–1175.10.1109/TSTE.2014.2336973Search in Google Scholar

[73] Johansen T.A., Bo T.I., Mathiesen E., Veksler A., Sorensen A.J., Dynamic positioning system as dynamic energy storage on diesel-electric ships, IEEE Trans. Power Syst., 2014, 29(6), 3086–3091.10.1109/TPWRS.2014.2317704Search in Google Scholar

[74] Masaud T.M., Lee K., Sen P.K., An overview of energy storage technologies in electric power systems: What is the future?, North American Power Symp. (NAPS), Arlington, TX, USA, 2010, 1–6.10.1109/NAPS.2010.5619595Search in Google Scholar

[75] Su C.-L., Weng X.-T., Chen C.-J., Power generation controls of fuel cell/energy storage hybrid ship power systems, Transport. Electr. Asia-Pacific (ITEC Asia-Pacific), 2014 IEEE Conference and Expo, Beijing, China, 2014, 1–6.10.1109/ITEC-AP.2014.6940639Search in Google Scholar

[76] Khan M.M.S., Faruque M.O., Newaz A., Fuzzy logic based energy storage management system for MVDC power system of all electric ship, IEEE Trans. En. Conv., 2017, 32(2), 798–809.10.1109/TEC.2017.2657327Search in Google Scholar

[77] Sciberras E.A., Zahawi B., Atkinson D.J., Breijs A., Van Vugt J.H., Managing shipboard energy. A stochastic approach special issue on marine systems electrification, IEEE Trans. Trans. Electr., 2016, 2(4), 538–546.10.1109/TTE.2016.2587682Search in Google Scholar

[78] Banaei M.R., Alizadeh R., Simulation-based modeling and power management of all-electric ships based on renewable energy generation using model predictive control strategy, IEEE Int. Trans. Syst. Mag., 2016, 8(2), 90–103.10.1109/MITS.2016.2533960Open DOISearch in Google Scholar

[79] Cairoli P., Dougal R.A., New horizons in DC shipboard power systems. New fault protection strategies are essential to the adoption of DC power systems, IEEE Electr. Mag., 2013, 1(2), 38–45.10.1109/MELE.2013.2291431Search in Google Scholar

[80] Ciezki J.G., Ashton R.W., Selection and stability issues associated with a navy shipboard DC zonal electric distribution system, IEEE Trans. Power Del., 2000, 15(2), 665–669.10.1109/61.853002Open DOISearch in Google Scholar

[81] Sulligoi G., Bosich D., Giadrossi G., Zhu L., Cupelli M., Monti A., Multiconverter medium voltage DC power systems on ships. Constant-power loads instability solution using linearization via state feedback control, IEEE Trans. Smart Grid, 2014, 5(5), 2543–2552.10.1109/TSG.2014.2305904Search in Google Scholar

[82] Jakšić M., Shen Z., Cvetković I., Boroyevich D., Burgos R., Dimarino C., Chen F., Medium-voltage impedance measurement unit for assessing the system stability of electric ships, IEEE Trans. En. Conv., 2017, 32(2), 829–841.10.1109/TEC.2017.2692275Search in Google Scholar

[83] Logan K.P., Intelligent diagnostic requirements of future all-electric ship integrated power system, IEEE Trans. Ind. Appl., 2007, 43(1), 139–149.10.1109/TIA.2006.886993Open DOISearch in Google Scholar

[84] Mitra P., Venayagamoorthy G.K., Implementation of an intelligent reconfiguration algorithm for an electric ships power system, IEEE Trans. Ind. Appl., 2011, 47(5), 2292–2300.10.1109/TIA.2011.2161849Open DOISearch in Google Scholar

[85] Bose S., Pal S., Natarajan B., Scoglio C.M., Das S., Schulz N.N., Analysis of optimal reconfiguration of shipboard power systems, IEEE Trans. Power Syst., 2012, 27(1), 189–197.10.1109/TPWRS.2011.2163948Search in Google Scholar

[86] Christopher E., Sumner M., Thomas D.W.P., Wang X., De Wildt F., Fault location in a zonal DC marine power system using active impedance estimation, IEEE Trans. Ind. Appl., 2013, 49(2), 860–865.10.1109/TIA.2013.2243391Open DOISearch in Google Scholar

eISSN:
2543-4292
ISSN:
2451-0262
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics