Open Access

Concepts of modern technologies of obtaining valuable biomass-derived chemicals


Cite

[1] Pacala S., Socolow R., Stabilization wedges: solving the climate problem for the next 50 years with current technologies, Science 305/2004, 968–972.10.1126/science.110010315310891Search in Google Scholar

[2] Werpy T., Petersen G., Top Value Added Chemicals from Biomass: Vol. I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Report No. NREL/TP-510-35523; National Renewable Energy Laboratory, Golden, CO, 2004.10.2172/15008859Search in Google Scholar

[3] The roadmap for biomass technologies in the U.S., Biomass R&D Technical Advisory Committee, US Department of Energy, Accession No. ADA 436527, 2002.Search in Google Scholar

[4] Lalak J., Kasprzycka A., Murat A., Paprota E.M., Tys J., Obróbka wstępna biomasy bogatej w lignocelulozę w celu zwiększenia wydajności fermentacyjnej metanowej, Acta Agrophysica 21/2014, 51–62.Search in Google Scholar

[5] Burczyk B., Biorafinerie: Ile w nich chemii ?, Wiadomości chemiczne, 63/2009, 9–10.Search in Google Scholar

[6] Corma A., Iborra S., Velty A., Chemical Routes for the Transformation of Biomass into Chemicals, Chemical Reviews 107/2007, 2411–2502.10.1021/cr050989d17535020Search in Google Scholar

[7] Tan K.T., Lee K.T., Mohamed A.R., Role of energy policy in renewable energy accomplishment: the case of second-generation bioethanol, Energy Policy, 36/2008, 3360–3365.10.1016/j.enpol.2008.05.016Search in Google Scholar

[8] Clark J., Deswarte F., Introduction to Chemicals from Biomass, Second Edition, John Wiley & Sons, Ltd. Published by John Wiley & Sons, Ltd., 2015.Search in Google Scholar

[9] Balat M., Balat H., Oz C., Progress in bioethanol processing, Progress in Energy and Combustion Science 34/2008, 551–573.10.1016/j.pecs.2007.11.001Search in Google Scholar

[10] Lin Y.-C., Huber G.W., The critical role of heterogeneous catalysis in lignocellulosic biomass conversion, Energy Environmental Science 2/2009, 68–80.10.1039/B814955KSearch in Google Scholar

[11] Gandini A., The irruption of polymers from renewable resources on the scene of macromolecular science and technology, Green Chemistry 13/2011, 1061–1083.10.1039/c0gc00789gSearch in Google Scholar

[12] Huber W., Iborra S. and Corma A., Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chemical Reviews 106/2006, 4044–4098.10.1021/cr068360d16967928Search in Google Scholar

[13] Langan P., Gnanakaran S., Rector K. D., Pawley N., Fox D. T., Cho D. W., Hammel K. E., Exploring new strategies for cellulosic biofuels production, Energy Environmental Science 4/2011, 3820–3833.10.1039/c1ee01268aSearch in Google Scholar

[14] da Costa Sousa L., Chundawat S. P. S., Balan V., Dale B. E., ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies, Current Opinions Biotechnology 20/2009, 339–347.10.1016/j.copbio.2009.05.00319481437Search in Google Scholar

[15] Himmel M. E., Ding S. Y., Johnson D. K., Adney W. S., Nimlos M. R., Brady J. W., Foust T. D., Science 315/2007, 804.10.1126/science.1137016Search in Google Scholar

[16] Ragauskas A. J., Williams C. K., Davison B. H., Britovsek G., Cairney J., Eckert C. A., Frederick, Jr W. J., Hallett J. P. and Leak D. J., et al., Science 311/2006, 484.10.1126/science.1114736Search in Google Scholar

[17] Wiercigroch E., Szafraniec E., Czamara K., Pacia M. Z., Majzner K., Kochan K., Kaczor A., Baranska M., Malek K., Raman and infrared spectroscopy of carbohydrates: A review, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 196/2018, 413–417.10.1016/j.saa.2017.05.045Search in Google Scholar

[18] Jarvis M.C., McCann M.C., Macromolecular biophysics of the plant cell wall: concepts and methodology. Plant Physiol Biochem, 38/2000, 1–13.10.1016/S0981-9428(00)00172-8Search in Google Scholar

[19] Ding S.-Y., Liu Y.-S., Zeng Y., Himmel M. E., Baker J. O., Bayer E. A., How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility?, Science 338/2012, 1055–1060.10.1126/science.1227491Search in Google Scholar

[20] Dorrestijn E., Laarhoven L. J.J., Arends I. W.c.E., Mulder P., The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal, Journal of Analalysis and Applied Pyrolysis 54/2000, 153–192.10.1016/S0165-2370(99)00082-0Search in Google Scholar

[21] Gosselink R.J.A., de Jong E., Guran B., Abächerli A., Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN), Industrial Crops and Products 20/2004 121–129.10.1016/j.indcrop.2004.04.015Search in Google Scholar

[22] Björkman A., Isolation of Lignin from Finely Divided Wood with Neutral Solvents, Nature 174/1954, 1057–1058.10.1038/1741057a0Search in Google Scholar

[23] Zheng, R., Wei, W., Shi Q., Density Functional Theory Study on Sum-Frequency Vibrational Spectroscopy of Arabinose Chiral Solutions, Journal of Physical Chemistry A 113/2009, 157–164.10.1021/jp808228e19072210Search in Google Scholar

[24] Brauer B., Pincu M., Buch V., Bar I., Simons J. P., Gerber R. B., Vibrational Spectra of α-Glucose, β-Glucose, and Sucrose: Anharmonic Calculations and Experiment, Journal Physical Chemistry A 115/2011, 5859–5872.10.1021/jp110043k21391638Search in Google Scholar

[25] Rinaldi R., Schüth F., Design of solid catalysts for the conversion of biomass, Energy Environmental Science 2/2009, 610–626.10.1039/b902668aSearch in Google Scholar

[26] Stöcker M., Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials, Angewandte Chemistry Int Ed Engl. 47/2008, 9200–9211.10.1002/anie.20080147618937235Search in Google Scholar

[27] Pérez-Ramírez J., Christensen C.H., Egeblad K., Christensen C.H., Groen J.C., Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design, Chemical Society Reviews 37/2008, 2530–2542.10.1039/b809030k18949124Search in Google Scholar

[28] Verboekend D., Pérez-Ramírez J., Design of hierarchical zeolite catalysts by desilication, Catalysis Science and Technology 1/2011, 879–890.10.1039/c1cy00150gSearch in Google Scholar

[29] Milina M., Mitchell S., Crivelli P., Cooke D., Pérez-Ramírez J., Mesopore quality determines the lifetime of hierarchically-structured zeolite catalysts, Nature Communication 5/2014, 4922.10.1038/ncomms4922Search in Google Scholar

[30] Zhang X.Q., Trinh T.T., van Santen R.A., Jansen A.P.J., Mechanism of the Initial Stage of Silicate Oligomerization, Journal of American Chemical Society 133/2011, 6613–6625.10.1021/ja110357k21486018Search in Google Scholar

[31] Szyja B.M., Hensen E. J. M., van Santen, R.A., Retro-analysis of silicate aggregation in pentasil zeolite formation, Catalysis Today 169/2011, 156–166.10.1016/j.cattod.2010.08.018Search in Google Scholar

[32] Yang G., Pidko E., Hensen, E. J. M., Structure, Stability, and Lewis Acidity of Mono and Double Ti, Zr, and Sn Framework Substitutions in BEA Zeolites: A Periodic Density Functional Theory Study, Journal of Physical Chemistry C 117/2013, 3976–3986.10.1021/jp310433rSearch in Google Scholar

[33] Lisboa O., Sanchez M., Ruette F., Modeling extra framework aluminum (EFAL) formation in the zeolite ZSM-5 using parametric quantum and DFT methods, Journal of Molecular Catalysis A: Chemistry 294/2008, 93–101.10.1016/j.molcata.2008.08.003Search in Google Scholar

[34] Malola S., Svelle S., Bleken F. L., Swang O., Detailed Reaction Paths for Zeolite Dealumination and Desilication From Density Functional Calculations, Angewandte Chemistry Int. Ed. 51/2012, 652–655.10.1002/anie.20110446222147388Search in Google Scholar

[35] Fjermestad, T.; Svelle, S.; Swang, O. Detailed Reaction Paths for Zeolite Dealumination and Desilication From Density Functional Calculations, J. Phys. Chem. C 117/2013, 13442–13451.10.1021/jp4028468Search in Google Scholar

[36] Silaghi M.C., Chizallet C., Raybaud P., Challenges on molecular aspects of dealumination and desilication of zeolites, Micro. Mesop. Materials 191/2014, 82–96.10.1016/j.micromeso.2014.02.040Search in Google Scholar

[37] Dhainaut J., Dacquin J.-P., Lee A.F., Wilson K., Hierarchical macroporous–mesoporous SBA-15 sulfonic acid catalysts for biodiesel synthesis, Green Chemistry 12/2010, 296–303.10.1039/B919341CSearch in Google Scholar

[38] Davis M.E., Heterogeneous Catalysis for the Conversion of Sugars into Polymers, Topics in Catalysis 58/2015, 405–409.10.1007/s11244-015-0386-9Search in Google Scholar

[39] Cejka J., Corma A., Zones S., Zeolites and Catalysis: Synthesis, Reactions and Applications, Vol. 1, 2010 WILEY-VCH.10.1002/9783527630295Search in Google Scholar

[40] Li Y.P., Head-Gordon M., Bell A.T., Analysis of the Reaction Mechanism and Catalytic Activity of Metal-Substituted Beta Zeolite for the Isomerization of Glucose to Fructose, ACS Catal. 4/2014, 1537−1545.10.1021/cs401054fSearch in Google Scholar

[41] Saravanamurugan S., Paniagua M., Melero J.A., Riisager A., Efficient Isomerization of Glucose to Fructose over Zeolites in Consecutive Reactions in Alcohol and Aqueous Media, Journal of American Chemical Society 135/2013, 5246−5249.10.1021/ja400097fSearch in Google Scholar

[42] Graca I., Iruretagoyena D., Chadwick D., Glucose isomerisation into fructose over magnesium-impregnated NaY zeolite catalysts, Applied Catalysis B: Environmental 206/2017, 434–443.10.1016/j.apcatb.2017.01.037Search in Google Scholar

[43] Moreau C., Durand R., Roux A., Tichit D., Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites, Applied Catalysis A: General 193/2000, 257–264.10.1016/S0926-860X(99)00435-4Search in Google Scholar

[44] Alonso D.M., Bond J.Q., Dumesic J.A., Catalytic conversion of biomass to biofuels, Green Chemistry 12/2010, 1493–1513.10.1039/c004654jSearch in Google Scholar

[45] Nandiwale K.Y., Galande N.D., Thakur P., Sawant S. D., Zambre V. P., and Bokade V.V., One-Pot Synthesis of 5-Hydroxymethylfurfural by Cellulose Hydrolysis over Highly Active Bimodal Micro/Mesoporous H-ZSM-5 Catalyst, ACS Sustainable Chemical Engineering 2/2014, 1928–1932.10.1021/sc500270zSearch in Google Scholar

[46] Zhang Z., Zhao Z., Production of 5-hydroxymethylfurfural from glucose catalyzed by hydroxyapatite supported chromium chloride, Bioresource Technology 102/2011, 3970–3972.10.1016/j.biortech.2010.11.09821185172Search in Google Scholar

[47] Guan J., Cao Q., Guo X., Mu X., The mechanism of glucose conversion to 5-hydroxymethylfurfural catalyzed by metal chlorides in ionic liquid: A theoretical study, Computational and Theoretical Chemistry 963/2011, 453–462.10.1016/j.comptc.2010.11.012Search in Google Scholar

[48] Otomo R., Yokoi T., Kondo J.N., Tatsumi T., Dealuminated Beta zeolite as effective bifunctional catalyst for direct transformation of glucose to 5-hydroxymethylfurfural, Applied Catalysis A: General 470/2014, 318–326.10.1016/j.apcata.2013.11.012Search in Google Scholar

[49] Hu L., Wu Z., Xu J., Sun Y., Lin L., Liu S., Zeolite-promoted transformation of glucose into 5-hydroxymethylfurfural in ionic liquid, Chemical Engineering Journal 244/2014, 137–144.10.1016/j.cej.2014.01.057Search in Google Scholar

[50] Chanie Y., Diaz I., Perez E., Kinetics and mechanisms of adsorption/desorption of the ionic liquid 1-buthyl-3-methylimidazolium bromide into mordenite, Journal of Chemical Technology and Biotechnology 91/2016, 705–710.10.1002/jctb.4632Search in Google Scholar

[51] Zhang L., Xi G., Chen Z., Qi Z., Wang X., Enhanced formation of 5-HMF from glucose using a highly selective and stable SAPO-34 catalyst, Chemical Engineering Journal 307/2017, 877–883.10.1016/j.cej.2016.09.003Search in Google Scholar

[52] Moreno-Recio M., Santamaria-Gonzalez J., Maireles-Torres P., Brönsted and Lewis acid ZSM-5 zeolites for the catalytic dehydration of glucose into 5-hydroxymethylfurfural, Chemical Engineering Journal 303/2016, 22–30.10.1016/j.cej.2016.05.120Search in Google Scholar

[53] Song S., Di L., Wu G., Dai W., Guan N., Li L., Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization, Applied Catalysis B: Environmental 205/2017, 393–403.10.1016/j.apcatb.2016.12.056Search in Google Scholar

[54] Gallo J.M.R., Alonso D.M., Mellmer M.A., Yeap J.H., Wong H.C., Dumesic J.A., Production of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived Solvent, Topics in Catalysis 56/2013, 1775–1781.10.1007/s11244-013-0113-3Search in Google Scholar

[55] Gϋrbϋz E.I., Gallo J.M.R., Alonso D.M., Wettstein S.G., Lim W.Y., Dumesic J.A., Conversion of Hemicellulose into Furfural Using Solid Acid Catalysts in γ-Valerolactone, Angewandte Chemistry Int. Ed. 52/2013, 1270–1274.10.1002/anie.20120733423212945Search in Google Scholar

[56] Murzin D.Y., Kusema B., E. Murzina E.V., Aho A., Tokarev A., Boymirzaev A.S., Wärnĺ J., Dapsens P.Y., Mondelli C., Pérez-Ramírez J., Salmi T., Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites, Journal of Catalysis 330/2015, 93–105.10.1016/j.jcat.2015.06.022Search in Google Scholar

[57] O’Neill R., Ahmad M.N., Vanoye L., Aiouache F., Kinetics of Aqueous Phase Dehydration of Xylose into Furfural Catalyzed by ZSM-5 Zeolite, Engineering and Chemistry Resources 48/2009, 4300–4306.10.1021/ie801599kSearch in Google Scholar

[58] Bruce S.M., Zong Z., Chatzidimitriou A., Avci L.E., Bond J.Q., Carreon M.A.,. Wettstein S.G., Small pore zeolite catalysts for furfural synthesis from xylose and switchgrass in a γ-valerolactone/water solvent, Journal of Molecular Catalysis A: Chemical 422/2016, 18–22.10.1016/j.molcata.2016.02.025Search in Google Scholar

[59] Kikhtyanin O., Bulanek R., Frolich K., Cejka J., Kubicka D., Aldol condensation of furfural with acetone over ion-exchanged and impregnated potassium BEA zeolites, Journal of Molecular Catalysis A: Chemical 424/2016, 358–368.10.1016/j.molcata.2016.09.014Search in Google Scholar

[60] Zhang L., Xi G., Chen Z., Jiang D., Yu H., Wang X., Highly selective conversion of glucose into furfural over modified zeolites, Chemical Engineering Journal 307/2017, 868–876.10.1016/j.cej.2016.09.001Search in Google Scholar

[61] Kumar V.B., Pulidindi I.N., Mishra R.K., Gedanken A., Ga Modified Zeolite Based Solid Acid Catalyst for Levulinic Acid Production, Chemistry Select 1/2016, 5952–5960.10.1002/slct.201601532Search in Google Scholar

[62] Ya’aini N., Amin N.A.S., Asmadi M., Optimization of levulinic acid from lignocellulosic biomass using a new hybrid catalyst, Bioresource Technology 116/2012, 58–65.10.1016/j.biortech.2012.03.09722609656Search in Google Scholar

[63] Zeng W., Cheng D., Zhang H., Chen F., Zhan X., Dehydration of glucose to levulinic acid over MFI-type zeolite in subcritical water at moderate conditions, Reaction Kinetics and Mechanisms of Catalyts 100/2010, 377–384.10.1007/s11144-010-0187-xSearch in Google Scholar

[64] Ramli N.A.S., Amin N.A.S., Fe/HY zeolite as an effective catalyst for levulinic acid productionfrom glucose: Characterization and catalytic performance, Applied Catalysis B: Environmental 163/2015, 487–498.10.1016/j.apcatb.2014.08.031Search in Google Scholar

[65] Ramli N.A.S., Amin N.A.S., Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst, Chemical Engineering Journal 283/2016, 150–159.10.1016/j.cej.2015.07.044Search in Google Scholar

[66] Chamnankid B., Ratanatawanate C., Faungnawakij K., Conversion of xylose to levulinic acid over modified acid functions of alkaline-treated zeolite Y in hot-compressed water, Chemical Engineering Journal 258/2014, 341–347.10.1016/j.cej.2014.07.036Search in Google Scholar

[67] Jow J., Rorrer G.L., Hawley M.C., Dehydration of d-fructose to levulinic acid over LZY zeolite catalyst, Biomass 14/1987, 185–194.10.1016/0144-4565(87)90046-1Search in Google Scholar

[68] Antunes M.M., Lima S., Neves P., Magalhaes A.L, Fazio E., Fernandes A., Neri F., Silva C.M., Rocha S.M., Ribeiro M.F., Pillinger M., Urakawa A., Valente A.A, One-pot conversion of furfural to useful bio-products in the presence of a Sn, Al-containing zeolite beta catalyst prepared via post-synthesis router, Journal of Catalysis 329/2015, 522–537.10.1016/j.jcat.2015.05.022Search in Google Scholar

[69] Bui L., Luo H., Gunther W.R., Roman-Leshkov Y., Domino Reaction Catalyzed by Zeolites with Brřnsted and Lewis Acid Sites for the Production of γ-Valerolactone from Furfural, Angewandte Chemistry Int. Ed. 52/2013, 8022–8025.10.1002/anie.20130257523757377Search in Google Scholar

[70] Wang J., Jaenicke S., Chuah G.K., Zirconium–Beta zeolite as a robust catalyst for the transformation of levulinic acid to γ-valerolactone via Meerwein–Ponndorf–Verley reduction, RSC Advances 4/2014, 13481–13489.10.1039/C4RA01120ASearch in Google Scholar

[71] Pavone A., Bio-based adipic acid, A private report by the Process Economics Program Report 284, Santa Clara, California 2012.Search in Google Scholar

[72] Lari G.M., Mondelli C., Perez-Ramirez J., Gas-Phase Oxidation of Glycerol to Dihydroxyacetone over Tailored Iron Zeolites, ACS Catalysis 5/2015, 1453−1461.10.1021/cs5019056Search in Google Scholar

[73] Dapsens P.Y., Kusema B.T., Mondelli C., Pérez-Ramírez J., Gallium-modified zeolites for the selective conversion of bio-baseddihydroxyacetone into C1–C4 alkyl lactates, Journal of Molecular Catalysis A: Chemical 388–389/2014, 141–147.10.1016/j.molcata.2013.09.032Search in Google Scholar

[74] Dapsens P.Y., Menart M.J., Mondelli C., Pérez-Ramírez J., Production of bio-derived ethyl lactate on GaUSY zeolites prepared by post-synthetic galliation, Green Chemistry 16/2014, 589–593.10.1039/C3GC40766GSearch in Google Scholar

[75] Hammaecher, C., Paul, J.-F. Density functional theory study of lactic acid adsorption and dehydration reaction on monoclinic 011, 101, and 111 zirconia surfaces, J.ournal of Catalysis 300/2013, 174–182.10.1016/j.jcat.2012.11.030Search in Google Scholar

[76] Ohara T., Sato T., Shimizu N., Prescher G., Schwind H., Weiberg O., Marten K., Greim H., Acrylic Acid and Derivatives in Ullmann’s Encyclopedia of Industrial Chemistry Wiley-VCH, Weinheim 2003.10.1002/14356007.a01_161Search in Google Scholar

[77] Mäki-Arvela, P., Simakova, I., Salmi, T., Murzin, D. Yu., Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities – A Review, Chemical Reviews 114/2014, 1909–1971.10.1021/cr400203vSearch in Google Scholar

[78] https://mcgroup.co.uk/news/20140508/china-leads-acrylic-acid-market-terms-production-consumption.html (access: 15.04.2018).Search in Google Scholar

[79] Yan B., Li-Zhi Tao, Liang Y., Bo-Qing Xu, Sustainable Production of Acrylic Acid: Catalytic Performance of Hydroxyapatites for Gas-Phase Dehydration of Lactic Acid, ACS Catalysis 4/2014, 1931–1943.10.1021/cs500388xSearch in Google Scholar

[80] Wang H., Yu D., Sun P., Yan J., Wang Y., Huang H., Rare earth metal modified NaY: Structure and catalytic performance for lactic acid dehydration to acrylic acid, Catalysis Communications 9/2008, 1799–1803.10.1016/j.catcom.2008.01.023Search in Google Scholar

[81] Sun P., Yu D., Fu K., Gu M., Wang Y., Huang H., Ying H., Potassium modified NaY: A selective and durable catalyst for dehydration of lactic acid to acrylic acid, Catalysis Communications 10/2009, 1345–1349.10.1016/j.catcom.2009.02.019Search in Google Scholar

[82] Yan J., Yu D., Heng H.L., Sun P., Huang H., NaY zeolites modified by La3+and Ba2+: the effect of synthesis details on surface structure and catalytic performance for lactic acid to acrylic acid, Journal of Rare Earths. 28/2010, 803.10.1016/S1002-0721(09)60205-2Search in Google Scholar

[83] Sun P., Yu D., Tang Z., Li H., Huang H., NaY Zeolites Catalyze Dehydration of Lactic Acid to Acrylic Acid: Studies on the Effects of Anions in Potassium Salts, Industrial Engineering and Chemical Resources 49/2010, 9082–9087.10.1021/ie101093xSearch in Google Scholar

[84] Sun P., Yu D., Fu K., Gu M., Wang Y., Huang H., Ying H., Potassium modified NaY: A selective and durable catalyst for dehydration of lactic acid to acrylic acid, Catalysis Communications 10/2009, 1345–1349.10.1016/j.catcom.2009.02.019Search in Google Scholar

[85] Zhang X., Lin L., Zhang T., Liu H., Zhang X., Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts, Chemical Engineering Journal 284/2016, 934–941.10.1016/j.cej.2015.09.039Search in Google Scholar

[86] Yuan C., Liu H., Zhang Z., Lu H., Zhu Q., Chen Y., Alkali-metal-modified ZSM-5 zeolites for improvement of catalytic dehydration of lactic acid to acrylic acid, Chinese Journal of Catalysis 36/2015, 1861–1866.10.1016/S1872-2067(15)60970-6Search in Google Scholar

[87] Yan B., Mahmood A., Liang Y., Xu B.Q., Sustainable production of acrylic acid: Rb+-and Cs+-exchanged Beta zeolite catalysts for catalytic gas-phase dehydration of lactic acid, Catalysis Today 269/2016, 65–73.10.1016/j.cattod.2015.10.030Search in Google Scholar

[88] Hong J.H., Lee J.-M., Kim H., Hwang Y.K., Chang J.-S., Halligudi S.B., Han Y.-H., Efficient and selective conversion of methyl lactate to acrylic acid using Ca3(PO4)2–Ca2(P2O7) composite catalysts, Applied Catalysis A 396/2011, 194–200.10.1016/j.apcata.2011.02.015Search in Google Scholar

[89] Zhang Z., Qu Y., Wang S., Wang J., Effect of Municipal Sewage Treatment Plant Effluent on Bioaccumulation of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in the Recipient Water, Environmental Science Technology 41/2007, 6026–6032.10.1021/es070913u17937277Search in Google Scholar

[90] Murphy B.M., Letterio, M.P. and Xu B., Catalyst Deactivation in Pyridine-Assisted Selective Dehydration of Methyl Lactate on NaY, ACS Catalysis 7/2017, 1912–1930.10.1021/acscatal.6b03166Search in Google Scholar

[91] CEH Marketing Research Report Acrylic Acid and Esters, SRI Consulting, https://chemstore.ihsmarkit.com/products/ceh-acrylic-acid-and-esters (access: 15.04.2018).Search in Google Scholar

[92] Blanco E., Lorentz C., Delichere P., Burel L., Vrinat M., Millet J.M.M., Loridant S., Dehydration of ethyl lactate over alkaline earth phosphates: Performances, effect of water on reaction pathways and active sites, Applied Catalysis B: Environmental 180/2016, 596–606.10.1016/j.apcatb.2015.07.005Search in Google Scholar

[93] Corma, A., Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions, Chem. Rev. 95/1995, 559–614.10.1021/cr00035a006Search in Google Scholar