Open Access

Two-Dimensional Numerical Simulation of a Thermoelectric Cooler Module

   | May 21, 2020

Cite

[1] Zhao D., Tan G., A review of thermoelectric cooling: Materials, modeling and applications, Applied Thermal Engineering, 66, 2014, 15–24.10.1016/j.applthermaleng.2014.01.074Search in Google Scholar

[2] Wang P., Recent advance in thermoelectric devices for electronics cooling, [in:] Cooling of Microelectronic and Nanoelectronic Equipment: Advances and Emerging Research, eds. Iyengar M., Geisler K.J.L., Sammakia B., World Scientific Publishing, Singapore 2015, 167–194.10.1142/9789814579797_0007Search in Google Scholar

[3] Li C., Jiao D., Mohan H., Guo F., Wang J., Thermoelectric cooling for power electronics circuits: Modeling and applications, Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, California, 2013, 3275–3282.10.1109/APEC.2013.6520770Search in Google Scholar

[4] Putra N., Ardiyansyah, Sukyono W., Johansen D., Iskandar F.N., The characterization of a cascade thermoelectric cooler in a cryosurgery device, Cryogenics, 50, 2010, 759–764.10.1016/j.cryogenics.2010.10.002Search in Google Scholar

[5] Vollmer M., Möllmann K.-P., Infrared Thermal Imaging, WILEY-VCH, Weinheim 2010.10.1002/9783527630868Search in Google Scholar

[6] Mansour K., Qiu Y., Hill C.J., Soibel A., Yang R.Q., Mid–infrared interband cascade lasers at thermoelectric cooler temperatures, Electronics Letters, 42(18), 2006, 1034–1035.10.1049/el:20062442Search in Google Scholar

[7] Kustas A., Jurgensmeyer A., Williams D., Dickman B., Bradley T., Willams J., Cote T., Lipsey T., Minor B., High efficiency thermoelectric coolers for use in firefighter applications, 10th International Energy Conversion Engineering Conference (IECEC), Georgia, Atlanta 2012.10.2514/6.2012-3987Search in Google Scholar

[8] Oliveira K.S.M., Cardoso R.P., Hermes C.J.L., Two–dimensional modeling of thermoelectric cells, 15th International Refrigeration and Air Conditioning Conference, Indiana, West Lafayette 2014.Search in Google Scholar

[9] Wang X.-D., Huang Y.-X., Cheng C.-H., Ta-Wei Lin D., Kang C.-H., A three–dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field, Energy, 47(1), 2012, 488–497.10.1016/j.energy.2012.09.019Search in Google Scholar

[10] Chen W.-H., Liao C.-Y., Hung C.-I, A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect, Applied Energy, 89(1), 2012, 464–473.10.1016/j.apenergy.2011.08.022Search in Google Scholar

[11] Antonova E.E., Looman D.C., Finite elements for thermoelectric device analysis in ANSYS, 24th International Conference on Thermoelectrics, Clemson, South Carolina, 2005, 215–218.10.1109/ICT.2005.1519922Search in Google Scholar

[12] Ebling D., Jaegle M., Bartel M., Jacquot A., Böttner H., Multiphysics simulation of thermoelectric systems for comparison with experimental device performance, Journal of Electronic Materials, 38(7), 2009, 1456–1461.10.1007/s11664-009-0825-0Search in Google Scholar

[13] Gaston D., Newman C., Hansen G., Lebrun-Grandié D., MOOSE: A parallel computational framework for coupled systems of nonlinear equations, Nuclear Engineering and Design, 239, 2009, 1768–1778.10.1016/j.nucengdes.2009.05.021Search in Google Scholar

[14] http://www.kryotherm.com/modulez/down57d0.pdf?filename=/dir2attz/import/TB-127-1.4-2.9.pdf (access: 02.01.2018).Search in Google Scholar

[15] Heat Transfer Module User’s Guide, COMSOL Multiphysics® v. 5.1. COMSOL AB, Stockholm 2015.Search in Google Scholar

[16] Lee H., The Thomson effect and the ideal equation on thermoelectric coolers, Energy, 56, 2013, 61–69.10.1016/j.energy.2013.04.049Search in Google Scholar