Open Access

Chemistry of 2-Aryl-1-Cyano-1-Nitroethenes. Part I. Synthesis and Physical Properties


Cite

[1] Barrett A.G.M., Graboski G.G., Conjugated nitroalkenes: versatile intermediates in organic synthesis, Chemical Reviews, 1986, 86, 751–762.10.1021/cr00075a002Search in Google Scholar

[2] Ono N., The nitro group in organic synthesis, Wiley-VCH, Weinheim 2001.10.1002/0471224480Search in Google Scholar

[3] Ballini R., Petrini M., Recent synthetic developments in the nitro to carbonyl conversion (Nef reaction), Tetrahedron, 2004, 60, 1017–1047.10.1016/j.tet.2003.11.016Search in Google Scholar

[4] Belenkii L.I., [in:] Nitrile oxides, nitrone and nitronates in organic synthesis, Ed. H. Feuer, Wiley, 2007.Search in Google Scholar

[5] Boruwa J., Gogoi N., Saikia P.P., Barua N.C., Catalytic asymmetric Henry reaction, Tetrahedron: Asymmetry, 2006, 17, 3315–3326.10.1016/j.tetasy.2006.12.005Search in Google Scholar

[6] Agrawal J.P., Hodgson R.D., Chemistry of explosives, Wiley, 2007.10.1002/9780470059364Search in Google Scholar

[7] Bergmeier S.C., The Synthesis of Vicinal Amino Alcohols, Tetrahedron, 2000, 56, 2561–2576.10.1016/S0040-4020(00)00149-6Search in Google Scholar

[8] Denmark S.E., Cottell J.J., [in:] The chemistry of heterocyclic compounds, Eds. A. Padwa, W.H. Pearson, New York 2002.Search in Google Scholar

[9] Novikov C.C., Shvekhgeimer G.A., Sevastyanova V.V., Shlaposhnikov V.A., Khimiya alifaticheskikh i alitsiklicheskikh nitrosoedinenii, Khimya, Moscov 1974.Search in Google Scholar

[10] Nguyen T.B., Martel A., Gaulon-Nourry C., Dhal R., Dujardin G., 1,3-Dipolar Cycloadditions of Nitrones to Hetero-substituted Alkenes Part 2: Sila-, Thia-, Phospha- and Halo-substituted Alkenes, Organic Preparations and Procedures International, 2012, 44, 1–81.10.1080/00304948.2012.643193Search in Google Scholar

[11] Terrier F., Dust J.M., Buncel E., Dual super-electrophilic and Diels–Alder reactivity of neutral 10π heteroaromatic substrates, Tetrahedron, 2012, 68, 1829–1843.10.1016/j.tet.2011.12.009Search in Google Scholar

[12] Ried W., Köhler E., Königstein F.J., Reacktionen mit Nitro-acetonitril, Liebigs Annalen, 1956, 598, 145–158.10.1002/jlac.19565980207Search in Google Scholar

[13] R. Jasiński, Preparatyka alifatycznych nitrozwiązków, RTN, 2013.Search in Google Scholar

[14] Matthews V.E., Kubler D.G., Improved Synthesis of Salts and Esters of Nitroacetic Acid, Journal of Organic Chemistry, 1960, 25, 266–268.10.1021/jo01072a606Search in Google Scholar

[15] Steinkopf W., Bohrmann L., Das Nitro-acetonitril, Liebigs Annalen, 1908, 41, 1044–1052.10.1002/cber.190804101207Search in Google Scholar

[16] Kanishchev M.I., Korneeva N.V., Shevelev S.A., Synthesis of 3-amino-5-benzylamino-4-nitropyrazole, Bulletin of the Academy of Sciences of the USSR, Division of chemical science, 1986, 35, 2145–2147.10.1007/BF00957547Search in Google Scholar

[17] Boguszewska-Czubara A., Lapczuk-Krygier A., Rykala K., Biernasiuk A., Wnorowski A., Popiolek L., Maziarka A., Hordyjewska A., Jasiński R., Novel synthesis scheme and in vitro antimicrobial evaluation of a panel of (E)-2-aryl-1-cyano-nitroethenes, Journal of Enzyme Inhibition and Medical Chemistry, 2016, 31, 900–907.10.3109/14756366.2015.107026426226180Search in Google Scholar

[18] Jasiński R., Miroslaw B., Demchuk O.M., Babyuk D., Łapczuk-Krygier A., In the search for experimental and quantumchemical evidence for zwitterionic nature of (2E)-3-[4-(dimethylamino)phenyl]-2-nitroproprop-2-enenitrile – an extreme example of donor-π-acceptor push-pull molecule, Journal of Molecular Structure, 2016, 1108, 689–697.10.1016/j.molstruc.2015.12.056Search in Google Scholar

[19] Kislyi V.P., Laikhter A.L., Ugrak B.L., Semenov V.V., Synthesis of α-functional nitro compounds by the nitration of activated carbonyl compounds in a two-phase system, Russian Chemical Bulletin, 1994, 43, 70–74.10.1007/BF00699138Search in Google Scholar

[20] Voinkov E.K., Ulomskiy E.N., Rusinov V.L., Savateev K.V., Fedotov V.V., Gorbunov E.B., Isenov M.L., Eltsov O.S., New stable form of nitroacetonitrile, Mendeleev Communications, 2016, 26, 172–173.10.1016/j.mencom.2016.03.031Search in Google Scholar

[21] Acheson R.M., Dearnaley D.P., Plunkett A.O., Porter V.C., The amino-acid Analogue of Mescaline, Journal of Chemical Sciences, 1963, 0, 2085–2087.10.1039/jr9630002085Search in Google Scholar

[22] Мечков Ц.Д., Демирева З.И., Синтез некоторых бисаммониевых солей 2,4-динитро-3-(4-фторфенил)глутаронитрила, Журнал органической химии, 1985, 21, 1884–1887.Search in Google Scholar

[23] Baichurin R.I., Aboskalova N.I., Trukhin E.V., Berestovitskaya V.M., Aryl(hetaryl)-Containing gem-Cyanonitroethenes: Synthesis, Structure, and Reactions with 2,3-Dimethyl-1,3-butadiene, Russian Journal of General Chemistry, 2015, 85, 1845–1854.10.1134/S1070363215080101Search in Google Scholar

[24] Metchkov T., Demireva Z., Die Synthese einiger Bis-Ammoniumsalze von 3,4-Dinitro-8-(methoxyphenyl)glutarnitrilen, Zeitschrift für Chemie, 1985, 25, 169–170.10.1002/zfch.19850250504Search in Google Scholar

[25] M. Kwiatkowska, Praca doktorska, Politechnika Krakowska 2008.Search in Google Scholar

[26] Nesterov V.N., Kislyi V.P., Timofeeva T.V., Antipina M.Yu., Semenov V.V., trans-1-Cyano-2- (2-methoxyphenyl)-1-nitroethylene, Acta Crystallographica Section C, 2000, C56, e107–e108.10.1107/S010827010000186415263219Search in Google Scholar

[27] Полянская А.С., Перекалин В.В., Абоскалова Н.И., Демирова З.И., Соколова Л.Н., Абдулкина З.А., Химия замещенных цианонитроалкенов II. Синтез и строение гетерилцианонитроалкенов, Журнал органической химии, 1979, 15, 2057–2061.Search in Google Scholar

[28] Troschütz R., Grün L., Synthese von basisch substituierten 5H-Pyrimido[4,5-c]-2-benzazepinen, Archiv der Pharmazie, 1993, 326, 857–864.10.1002/ardp.19933261104Search in Google Scholar

[29] Абоскалова Н.И., Полянская А.С., Перекалин В.В., Демирова З.И., Соколова Л.Н., Реакция алкенилирования в присутствии кислотных катализаторов, Журнал органической химии, 1972, 8, 1332–1333.Search in Google Scholar

[30] Tamaddon F., Tayefi M., Hosseini E., Zare E., Dolomite (CaMg(CO3)2) as a recyclable natural catalyst in Henry, Knoevenagel, and Michael reactions, Journal of Molecular Catalysis A: Chemical, 2013, 366, 36–42.10.1016/j.molcata.2012.08.027Search in Google Scholar

[31] Brillon D., Sauvé G., Silica Gel-Catalyzed Knoevenagel Condensation of Peptidyl Cyanomethyl Ketones with Aromatic Aldehydes and Ketones. A Novel Michael Acceptor Functionality for C-Modified Peptides: The Benzylidene and Alkylidene Cyanomethyl Ketone Function, Journal of Organic Chemistry, 1992, 57, 1838–1842.10.1021/jo00032a042Search in Google Scholar

[32] Amantini D., Fringuelli F., Piermatti O., Pizzo F., Vaccaro L., Water, a clean, inexpensive, and re-usable reaction medium. One-pot synthesis of (E)-2-aryl-1-cyano-1-nitroethenes, Green Chemistry, 2001, 3, 229–232.10.1039/b105522bSearch in Google Scholar

[33] Valizadeh H., Mamaghani M., Badrian A., Effect of Microwave Irradiation on Reaction of Arylaldehyde Derivatives with Some Active Methylene Compounds in Aqueous Media, Synthetic Communications, 2005, 35, 785–790.10.1081/SCC-200050942Search in Google Scholar

[34] Bláha I., Lešetický L., Preparation and Z-E isomerization of substituted nitrostyrenes, Collection Czechoslovak Chemical Communication, 1986, 51, 1094–1099.10.1135/cccc19861094Search in Google Scholar

[35] Shechter H., Conrad F., Daulton A. L., Kaplan R. B., Orientation in Reactions of Nitryl Chloride and Acrylic Systems, Journal of American Chemical Society, 1952, 74, 3052–3056.10.1021/ja01132a029Search in Google Scholar

[36] Nishiwaki N., Nogami T., Tanaka C., Nakashima F., Inoue Y., Asaka N., Tohda Y., Ariga M., Aplication of Cyano-aci-Nitroacetate to Organic Synthesis. 1. Facile Synthesis of Pentanedinitrile-2,4-dinitronates, Journal of Organic Chemistry, 1999, 64, 2160–2162.10.1021/jo981887911674322Search in Google Scholar

[37] Kącka-Zych A., Domingo L.R., Ríos-Gutiérrez M., Jasiński R., Understanding the mechanism of the decomposition reaction of nitroethyl benzoate through the Molecular Electron Density Theory, Theoretical Chemistry Accounts, 2017, 136, 129.10.1007/s00214-017-2161-4Search in Google Scholar

[38] Kącka A., Jasiński R., A dramatic change of kinetic conditions and molecular mechanism of decomposition processes of nitroalkyl carboxylates catalyzed by ethylammonium cations, Computational and Theoretical Chemistry, 2017, 1104, 37–42.10.1016/j.comptc.2017.02.008Search in Google Scholar

[39] Kącka A., Jasiński R., Triethylsulfonium and triethylphosphonium cations as novel catalysts for the decomposition process of nitroethyl benzoates, Phosphorus Sulfur and Silicon and the Related Elements, 2017, 192, 1252–1258.10.1080/10426507.2017.1290626Search in Google Scholar

[40] Kącka A., Jasiński R., DFT study of the decomposition reactions of nitroethyl benzoates catalyzed by the 1,3-dimethylimidazolium cation, Current Chemistry Letters, 2017, 6, 15–22.10.5267/j.ccl.2016.11.001Search in Google Scholar

[41] Kącka A., Jasiński R., A DFT mechanistic study of thermal decomposition reactions of nitroethyl carboxylates: undermine of pericyclic insight, Heteroatom Chemistry, 2016, 27, 279–289.10.1002/hc.21326Search in Google Scholar

[42] Łapczuk-Krygier A., Ponikiewski Ł., Single crystal X-ray structure of (Z)-1-bromo-1-nitro-2-phenylethene, Current Chemistry Letters, 2015, 4, 21–26.10.5267/j.ccl.2014.12.001Search in Google Scholar