Open Access

Hyperelastic Behaviour of Auxetic Material in Tension and Compression Tests


Cite

[1] Alderson A., Alderson K.L., Auxetic materials, Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering – Special Issue Paper, 2007, 565–575.10.1243/09544100JAERO185Search in Google Scholar

[2] Alderson K.L., Alderson A., Evans K.E., The Interpretation of the Strain–dependent Poisson’s Ratio in Auxetic Polyethylene, J. Strain Anal., 1998, 32, 201–212.10.1243/0309324971513346Search in Google Scholar

[3] Danielsson M., Parks D., Boyce M.C., Constitutive modelling of porous hyperelastic materials, Mechanics of Materials, 2004, 36, 347–358.10.1016/S0167-6636(03)00064-4Search in Google Scholar

[4] Darijani H., Naghdabadi R., Hyperelastic materials behavior modeling using consistent strain energy density functions, Acta Mechanica, 2010, 213, 235–254.10.1007/s00707-009-0239-3Search in Google Scholar

[5] Dirrenberger J., Forest S., Jeulin D., Colin C., Homogenization of periodic auxetic materials, Procedia Engineering 10, 2011, 1847–1852.10.1016/j.proeng.2011.04.307Search in Google Scholar

[6] Dłużewski P., Anisotropic Hyperelasticity Based Upon General Strain Measures, Journal of Elasticity, 60, 2000, 119–129.10.1023/A:1010969000869Search in Google Scholar

[7] Federico S., Grillo A., Imatani S., Giaquinta G., Herzog W., An energetic approach to the analysis of anisotropic hyperelastic materials, International Journal of Engineering Science, 46, 2008, 164–181.10.1016/j.ijengsci.2007.09.005Search in Google Scholar

[8] Greaves G.N., Greer A.L., Lakes R.S., Rouxel T., Poisson’s ratio and modern materials, Modern Materials, Published online, review article, 24 October 2011, DOI: 10.1038 NMAT 3134.10.1038/nmat313422020006Search in Google Scholar

[9] Holzeapfel G.A., Nonlinear Solid Mechanics, A Continuum Approach for Engineering, Technical University, Graz, Austria 2000.Search in Google Scholar

[10] Horgan C., The remarkable Gent constitutive model for hyperelastic materials, International Journal of Non–Linear Mechanics, 68, 2015, 9–16.10.1016/j.ijnonlinmec.2014.05.010Search in Google Scholar

[11] Janus-Michalska M., Hyperelastic behavior of cellular structures based on micromechanical modeling at small strain, Archives of Mechanics, Issue 1, Vol. 63, Warszawa 2011, 3–24.Search in Google Scholar

[12] Janus-Michalska M., Micromechanical Model of Auxetic Cellular Materials, Issue 4, Vol. 47, Journal of Theoretical and Applied Mechanics, 2009, 5–22.Search in Google Scholar

[13] Janus-Michalska M., Effective Model Describing Elastic Behaviour of Cellular Materials, Archives of Metallurgy and Materials, Vol. 50/3, 2005, 595–608.Search in Google Scholar

[14] Kumar R.S., McDowell D.L., Generalized Continuum Modelling of 2–D periodic Cellular Solids, Int. Journal of Solids and Structures, 41, 7299–7422.10.1016/j.ijsolstr.2004.06.038Search in Google Scholar

[15] Murphy G.J., Strain Energy Functions for a Poisson Power Law Function in Simple Tension of Compressible Hyperelastic Materials, Journal of Elasticity, 60, 2000, 151–164.Search in Google Scholar

[16] Nemat-Maser S., Hori M., Micromechanics,2nd Edition, Elsevier, 1999.Search in Google Scholar

[17] Smith C.W., Wootton R.J., Evans K.E., Interpretation of experimental data for Poisson’s ratio of highly nonlinear materials energy density functions, Acta Mechanica, 213, 2010, 235–254.10.1007/s00707-009-0239-3Search in Google Scholar

[18] Vegori L., Destrade M., McGarry P., Ogden R., On anisotropic elasticity and questions concerning its Finite Element implementation, Computational Mechanics, 52, 2013, 1185–1197.10.1007/s00466-013-0871-6Search in Google Scholar

[19] Wang F., Sigmund O., Jensen J.S., Design of materials with prescribed nonlinear properties, Journal of mechanics and Physics of Solids, 69, 2014, 156–174.10.1016/j.jmps.2014.05.003Search in Google Scholar