Cite

[1] Pope M., Kallmann H.P, Magnante P., Electroluminescence in Organic Crystals, J. Chem. Phys. 38, 1963, 2042–2046.10.1063/1.1733929Search in Google Scholar

[2] Helfrich W., Schneider W.G., Recombination Radiation in Anthracene Crystals, Phys. Rev. Lett. 14, 1965, 229–231.10.1103/PhysRevLett.14.229Search in Google Scholar

[3] Nasu K., Nakagawa T., Nomura H., Lin C.-J., Cheng C.-H., Tseng M.-R., Yasuda T., Adachi C., A highly luminescent spiro-anthracenone-based organic light-emitting diode exhibiting thermally activated delayed fluorescence, Chem. Commun. 49, 2013, 10385–10387.10.1039/C3CC44179BSearch in Google Scholar

[4] Wan W., Du H., Wang J., Le Y., Jiang H., Chen H., Zhu S., Hao J.A., Novel blue luminescent materials for organic light-emitting diodes based on C9-fluorenyl anthracenes, Dyes Pigm. 96, 2013, 642–652.10.1016/j.dyepig.2012.10.013Search in Google Scholar

[5] Zhang P., Dou W., Ju Z., Yang L., Tang X., Liu W., Wu Y., A 9,9′-bianthracene-cored molecule enjoying twisted intramolecular charge transfer to enhance radiative-excitons generation for highly efficient deep-blue OLEDs, Org. Electron. 14, 2013, 915–925.10.1016/j.orgel.2012.12.040Search in Google Scholar

[6] Wang J.-J., Hu T.-L., Bu X.-H., Cadmium(ii) and zinc(ii) metal-organic frameworks with anthracene-based dicarboxylic ligands: Solvothermal synthesis, crystal structures, and luminescent properties, CrystEngComm. 13, 2011, 5152–5161.10.1039/c1ce05287jSearch in Google Scholar

[7] Zhu M., Wang Q., Gu Y., Cao X., Zhong C., Ma D., Qin J., Yang C., Efficient deep-blue emitters comprised of an anthracene core and terminal bifunctional groups for nondoped electroluminescence, J. Mater. Chem. 21, 2011, 6409–6415.10.1039/c1jm10465aSearch in Google Scholar

[8] Zhang J., Xu B., Chen J., Ma S., Dong Y., Wang I., Li B., Ye L., Tian W., An organic luminescent molecule: What will happen when the “butterflies” come together?, Adv. Mater. 26, 2014, 739–745.10.1002/adma.201303639Search in Google Scholar

[9] Ye S., Chen J., Di C.-A., Liu Y., Lu K., Wu W., Du C., Liu Y., Shuai Z., Yu G., Phenyl-substituted fluorene-dimer cored anthracene derivatives: Highly fluorescent and stable materials for high performance organic blue- and white-light-emitting diodes, J. Mater. Chem. 20, 2010, 3186–3194.10.1039/b925418hSearch in Google Scholar

[10] Li B., Miao W., Cheng L., Synthesis and fluorescence properties of 9,10-bis(phenylethynyl) anthracences, Dyes Pigm. 43, 1999, 161–165.10.1016/S0143-7208(99)00057-1Search in Google Scholar

[11] Kilså K., Macpherson A.N., Gillbro T., Mårtensson J., Albinsson B., Control of electron transfer in supramolecular systems, Spectrochim. Acta, Part A 57, 2001, 2213–2227.10.1016/S1386-1425(01)00497-8Search in Google Scholar

[12] Kawai T., Sasakia T., Irie M., A photoresponsive laser dye containing photochromic dithienylethene units, Chem. Commun., 2001, 711–712.10.1039/b100330pSearch in Google Scholar

[13] Kilså K., Kajanus J., Macpherson A.N., Mårtensson J., Albinsson B., Bridge-Dependent Electron Transfer in Porphyrin-Based Donor-Bridge-Acceptor Systems, J. Am. Chem. Soc. 123, 2001, 3069–3080.10.1021/ja003820k11457018Search in Google Scholar

[14] Ribierre J.C., Ruseckas A., Cavaye H., Barcena H.S., Burn P.L., Samuel I.D.W., Photophysical Properties of 9,10-Disubstituted Anthracene Derivatives in Solution and Films, J. Phys. Chem. A 115, 2011, 7401–7405.10.1021/jp200668x21574639Search in Google Scholar

[15] Levitus M., Garcia-Garibay M.A., Polarized Electronic Spectroscopy and Photophysical Properties of 9,10-Bis(phenylethynyl)anthracene, J. Phys. Chem. A 104, 2000, 8632–8637.10.1021/jp001483wSearch in Google Scholar

[16] Angelova A., Ionov R., Monolayer and Spectroscopic Studies of an Amphiphilic (Phenylethynyl)anthracene Probe in Pure and Mixed Films with Charged and Neutral Lipids, Langmuir 15, 1999, 7199–7207.10.1021/la981536pSearch in Google Scholar

[17] Angelov B., Angelova A., Ionov R., An Amino-Substituted Phenylethynyl-anthracene Probe Shows a Sensitivity to Changes in the Lipid Monolayer Curvature of Nonlamellar Lipid/ Water Phases, J. Phys. Chem. B 104, 2000, 9140–9148.10.1021/jp993779bSearch in Google Scholar

[18] Lübtow M., Helmers I., Stepanenko V., Albuquerque R.Q., Marder T.B., Fernández G., Self-Assembly of 9,10-Bis(phenylethynyl) Anthracene (BPEA) Derivatives: Influence of p–p and Hydrogen-Bonding Interactions on Aggregate Morphology and Self-Assembly Mechanism, Chem. Eur. J. 23, 2017, 6198–6205.10.1002/chem.20160598928187239Search in Google Scholar

[19] Wang C.-Y., Ediger M.D., Enhanced Translational Diffusion of 9,10-Bis(phenylethynyl) anthracene (BPEA) in Polystyrene, Macromolecules 30, 1997, 4770–4771.10.1021/ma961907dSearch in Google Scholar

[20] Deppe D.D., Dhinojwala A., Torkelson J.M., Small Molecule Probe Diffusion in Thin Polymer Films Near the Glass Transition: A Novel Approach Using Fluorescence Nonradiative Energy Transfer, Macromolecules 29, 1996, 3898–3908.10.1021/ma960024jSearch in Google Scholar

[21] Wisnudel M.B., Torkelson J.M., Small-Molecule Probe Diffusion in Polymer Solutions: Studies by Taylor Dispersion and Phosphorescence Quenching, Macromolecules 29, 1996, 6193–6207.10.1021/ma960635bSearch in Google Scholar

[22] Giménez R., Pinol M., Serrano J. L., Luminescent Liquid Crystals Derived from 9,10-Bis(Phenylethynyl)anthracene, Chem. Mater. 16, 2004, 1377–1383.10.1021/cm030582uSearch in Google Scholar

[23] Xiao D., Xian Y., Liu L., Gu Z., Wen B., Organic nanoparticle of 9,10-Bis(phenylethynyl) anthracene: a novel electrochemiluminescence emitter for sensory detection of amines, New J. Chem. 37, 2013, 1–3.10.1039/c3nj01227aSearch in Google Scholar

[24] Ponnu A., Anslyn E.V., A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives, Supramol. Chem. 22, 2010, 65–71.10.1080/10610270903378032Search in Google Scholar

[25] Kim S.-O., Lee M.W., Jang S.H., Park S.M., Park J. W., Park M.-H., Kang S.H., Kim Y.-H., Song C.K., Kwon S.K., Organic semiconductor based on phenylethynyl end-capped anthracene, Thin Solid Films 519, 2011, 7998–8002.10.1016/j.tsf.2011.05.060Search in Google Scholar

[26] Li Y., Ji D., Liu J., Yao Y., Fu X., Zhu W., Xu Ch., Dong H., Li J., Hu W., Quick Fabrication of Large-area Organic Semiconductor Single Crystal Arrays with a Rapid Annealing Self-Solution-Shearing Method, Sci. Rep. 5, 2015, 13195,1–9.10.1038/srep13195Search in Google Scholar

[27] Malakhov A.D., Skorobogatyi M.V., Prokhorenko I.A., Gontarev S.V., Kozhich D.T., Stetsenko A.D., Stepanova I.A., Shenkarev Z.O., Berlin Y.A., Korshun V.A., 1-(Phenylethynyl) pyrene and 9,10-Bis(phenylethynyl)anthracene, Useful Fluorescent Dyes for DNA Labeling: Excimer Formation and Energy Transfer, Eur. J. Org. Chem., 2004, 1298–1307.10.1002/ejoc.200300677Search in Google Scholar

[28] Fatemi D.J., Murata H., Merritt C.D., Kafafi Z.H., Highly Fluorescent Molecular Organic Composites for Light-Emitting Diodes, Synth. Met. 85, 1997, 1225–1228.10.1016/S0379-6779(97)80215-9Search in Google Scholar

[29] Huang J., Su J.-H., Tian H., The development of anthracene derivatives for organic light-emitting diodes, J. Mater. Chem. 22, 2012, 10977–10989.10.1039/c2jm16855cSearch in Google Scholar

[30] Fitzner R., Mena-Osteritz E., Walzer K., Pfeiffer M., Bäuerle P., A–D–A-Type Oligothiophenes for Small Molecule Organic Solar Cells: Extending the π-System by Introduction of Ring-Locked Double Bonds, Adv. Funct. Mater. 25, 2015, 1845–1856.10.1002/adfm.201404210Search in Google Scholar

[31] Lai Y.-Y., Yeh J.-M., Tsai C.-E., Cheng Y.-J., Synthesis, Molecular and Photovoltaic Properties of an Indolo[3,2-b]indole- Based Acceptor–Donor–Acceptor Small Molecule, Eur. J. Org. Chem., 2013, 5076–5084.10.1002/ejoc.201300443Search in Google Scholar

[32] Sahu D., Padhy H., Patra D., Yin J.-F., Hsu Y.-C., Lin J. T., Lu K.-L., Wei K.-H., Lin H.-C., Synthesis and applications of novel acceptoredonoreacceptor organic dyes with dithienopyrroleand fluorene-cores for dye-sensitized solar cells, Tetrahedron 67, 2011, 303–311.10.1016/j.tet.2010.11.044Search in Google Scholar

[33] Kuropatov V., Klementieva S., Fukin G., Mitin A., Ketkov S., Budnikova Y., Cherkasov V., Abakumov G., Novel method for the synthesis of functionalized tetrathiafulvalenes, an acceptoredonoreacceptor molecule comprising of two o-quinone moieties linked by a TTF bridge, Tetrahedron 66, 2010, 7605–7611.10.1016/j.tet.2010.07.038Search in Google Scholar

[34] Silvestri F., Marrocchi A., Acetylene-Based Materials in Organic Photovoltaics, Int. J. Mol. Sci. 11, 2010, 1471–1508.10.3390/ijms11041471Search in Google Scholar

[35] Danel K., Lin J.T., Novel red-light-emitting 9,10-bis(phenylethynyl)anthracenes, Arkivoc (i), 2002, 12–18.10.3998/ark.5550190.0003.103Search in Google Scholar

[36] Danel K., Ozga K., Kityk I.V., Circularly light-induced electrogyration in the arylethynyl derivatives incorporated within the oligoetheracrylate photopolymer matrices, Chem. Phys. 313, 2005, 33–38.10.1016/j.chemphys.2004.12.015Search in Google Scholar

[37] Frisch M.J., Trucks G.W., Schlegel H.B. et al., Gaussian 03: Revision E.01, Gaussian Inc., Wallingford CT 2004.Search in Google Scholar

[38] Fudickar W., Linker T., Why Triple Bonds Protect Acenes from Oxidation and Decomposition, J. Am. Chem. Soc. 134, 2012, 15071–15082.10.1021/ja306056xSearch in Google Scholar

[39] Yucel B., Meral K., Ekinci D., Uzunoğlu G.Y., Tüzün N.S., Özbey S., Kazak C., Ozdemir Y., Sanli B., Kayık G., Dağdeviren M., Synthesis and characterization of solution processable 6,11-dialkynyl substituted indeno[1,2-b]anthracenes, Dyes Pigm. 100, 2014, 104–117.10.1016/j.dyepig.2013.08.024Search in Google Scholar

[40] Pettersson L.A.A., Ghosh S., Inganas O., Optical anisotropy in thin films of poly (3,4-ethylenedioxythiophene)–poly(4-styrenesulfonate), Org. Electron. 3, 2002, 143–148.10.1016/S1566-1199(02)00051-4Search in Google Scholar

[41] Fujiwara H., Spectroscopic Ellipsometry: Principles and Applications, John Wiley&Sons, Ltd. 2007.10.1002/9780470060193Search in Google Scholar

[42] Feller L., Bearinger J.P., Wu L., Hubbell J. A., Textor M., Tosatti S., Micropatterning of gold substrates based on poly(propylene sulfide-bl-ethylene glycol), (PPS–PEG) background passivation and the molecular-assembly patterning by lift-off (MAPL) technique, Surf. Sci. 602, 2008, 2305–2310.10.1016/j.susc.2008.05.010261053519578480Search in Google Scholar

[43] Woollam J. A., Co. Inc.CopleteEASETM Data Analysis Manual, Lincon 2009.Search in Google Scholar

[44] Bujak P., Kulszewicz-Bajer I., Zagorska M., Maurel V., Wielgus I., Pron A., Polymers for Electronics and Spintronics, Chem. Soc. Rev. 42, 2013, 8895–8999.10.1039/c3cs60257e24030727Search in Google Scholar

[45] Bijak K., Sek D., Siwy M., Grucela-Zajac M., Janeczek H., Wiacek M., Malecki G., Schab-Balcerzak E., Spectral, electrochemical and thermal characteristics of glass forming hydrazine derivatives, Opt. Mater. 37, 2014, 498–510.10.1016/j.optmat.2014.07.013Search in Google Scholar

[46] Kung Y.-C., Hsiao S.-H., Novel luminescent and electrochromic polyhydrazides and polyoxadiazoles bearing pyrenylamine moieties, Polym. Chem. 2, 2011, 1720–1727.10.1039/c1py00115aSearch in Google Scholar

[47] Grigoras M., Vacareanu L., Ivan T., Catargiu A.M., Photophysical properties of isoelectronic oligomers with vinylene, imine, azine and ethynylene spacers bearing triphenylamine and carbazole end-groups, Dyes Pigm. 98, 2013, 71–81.10.1016/j.dyepig.2013.01.025Search in Google Scholar

[48] Mishra A., Bäuerle P., Small Molecule Organic Semiconductors on the Move: Promises for Future Solar Energy Technology, Angew. Chem. Int. Ed. 51, 2012, 2020–2067.10.1002/anie.20110232622344682Search in Google Scholar