Open Access

Study of oxidative coupling of methane integrated with co oxidation


Cite

[1] Oxidative Coupling of Methane, http://siluria.com/Technology/Oxidative_Coupling_of_Methane (access: 11.04.16).Search in Google Scholar

[2] Godini H.R., Xiao S., Jašo S., Stünkel S., Salerno D., Son N.X., Song S., Wozny G., Techno-economic analysis of integrating the methane oxidative coupling and methane reforming processes, Fuel Processing Technology, vol. 106, 2013, 684–694.10.1016/j.fuproc.2012.10.002Search in Google Scholar

[3] Michorczyk B., Ogonowski J., Michorczyk P., Węgrzyniak A., Katalizatory dla procesu utleniającego sprzęgania metanu, Przemysł Chemiczny, vol. 93, 2014, 1166–1173.Search in Google Scholar

[4] Tiemersma T.P., Chaudhari A.S., Gallucci F., Kuipers J.A.M., van Sint Annaland M., Integrated autothermal oxidative coupling and steam reforming of methane. Part 1: Design of a dual-function catalyst particle, Chemical Engineering Science, vol. 82, 2012, 200–214.10.1016/j.ces.2012.07.048Search in Google Scholar

[5] Tiemersma T.P., Chaudhari A.S., Gallucci F., Kuipers J.A.M., van Sint Annaland M., Integrated autothermal oxidative coupling and steam reforming of methane. Part 2: Development of a packed bed membrane reactor with a dual function catalyst, Chemical Engineering Science, vol. 82, 2012, 232–245.10.1016/j.ces.2012.07.047Search in Google Scholar

[6] Tiemersma T.P., Kolkman T., Kuipers J.A.M., van Sint Annaland M., A novel autothermal reactor concept for thermal coupling of the exothermic oxidative coupling and endothermic steam reforming of methane, Chemical Engineering Journal, vol. 203, 2012, 223–230.10.1016/j.cej.2012.07.021Search in Google Scholar

[7] Godini H.R., Xiao S., Kim M., Görke O., Song S., Wozny G., Dual-membrane reactor for methane oxidative coupling and dry methane reforming: Reactor integration and process intensification, Chemical Engineering and Processing, vol. 74, 2013, 153–164.10.1016/j.cep.2013.09.007Search in Google Scholar

[8] Thybaut J. W., Marin G. B., Mirodatos C., Schuurman Y., van Veen A. C., Sadykov V. A., Pennemann H., Bellinghausen R., Mleczko L., A Novel Technology for Natural Gas Conversion by Means of Integrated Oxidative Coupling and Dry Reforming of Methane, Chemie Ingenieur Technik, vol. 86, 2014, 1855–1870.10.1002/cite.201400068Search in Google Scholar

[9] Godini H. R., Jaso S., Nghiem S. X., Görke O., Sadjadi S., Stünkel S., Song S., Simon U., Schomäcker R., Wozny G., Miniplant-Scale Analysis of Oxidative Coupling of Methane Process, Journal of Oil, Gas and Petrochemical Technology, vol. 2, 2015, 57–71.Search in Google Scholar

[10] Skutil K., Taniewski M., Some technological aspects of methane aromatization (direct and via oxidative coupling), Fuel Processing Technology, vol. 87, 2006, 511–521.10.1016/j.fuproc.2005.12.001Search in Google Scholar

[11] Skutil K., Taniewski M., Indirect methane aromatization via oxidative coupling, products separation and aromatization steps, Fuel Processing Technology, vol. 88, 2007, 877–882.10.1016/j.fuproc.2007.04.006Search in Google Scholar

[12] Qiu P., Lunsford J.H., Rosynek M.P., Steady-state conversion of methane to aromatics in high yields using an integrated recycle reaction system, Catalysis Letters, vol. 48, 1997, 11–15.Search in Google Scholar

[13] Graf P.O., Lefferts L., Reactive separation of ethylene from the effluent gas of methane oxidative coupling via alkylation of benzene to ethylbenzene on ZSM-5, Chemical Engineering Science, vol. 64, 2009, 2773–2780.10.1016/j.ces.2009.02.031Search in Google Scholar

[14] Czechowicz D., Skutil K., Tórz A., Taniewski M., An integrated process of oxidative coupling of methane and pyrolysis of naphtha in a scaled-up unit, Journal of Chemical Technology and Biotechnology, vol. 79, 2004, 182–186.10.1002/jctb.952Search in Google Scholar

[15] Wensheng C., Grant P., Process for producing acetic acid and/or ethanol by methane oxidation, Patent. WO 2014/143865 A1, Pub.18.09.2014.Search in Google Scholar

[16] Ghareghashi A., Ghader S., Hashemipour H., Theoretical analysis of oxidative coupling of methane and Fischer Tropsch synthesis in two consecutive reactors: Comparison of fixed bed and membrane reactor, Journal of Industrial and Engineering Chemistry, vol. 19, 2013, 1811–1826.10.1016/j.jiec.2013.02.025Search in Google Scholar

[17] Xu L., Xie S., Liu S., Lin L., Tian Z., Zhu A., Combination of CH4 oxidative coupling reaction with C2H6 oxidative dehydrogenation by CO2 to C2H4, Fuel, vol. 81, 2002, 1593–1597.10.1016/S0016-2361(02)00074-1Search in Google Scholar

[18] Xu L., Xie S., Liu S., Lin L., Tian Z., Zhu A., Combination of CH4 oxidative coupling reaction with C2H6 oxidative dehydrogenation by CO2 to C2H4, Fuel, 81, 2002, 1593–1597.10.1016/S0016-2361(02)00074-1Search in Google Scholar

[19] Michorczyk B., Suszyński K., Smoleń P., Hędrzak E., Utleniające sprzęganie metanu zintegrowane w jednym reaktorze z odwodornieniem etanu do etenu, Przemysł Chemiczny, vol. 95, 2016, 1936–1940.Search in Google Scholar

[20] Rekoske J.E., Oxidative coupling of methane with carbon conservation, Uop Llc, Glenview. USA. Patent. US006096934A. Pub.1.08.2000.Search in Google Scholar

[21] Kalakkunnath S,. Oxidative Coupling of Methane to Ethylene by Siluria Process, https://chemical.ihs.com/PEP/Public/Reports/Phase_2014/RW2014-07/ (access: 11.04.16).Search in Google Scholar

[22] Shi J., Lu Y., Hu Ch., Effect of CO2 on the structural variation of Na2WO4/Mn/SiO2 catalyst for oxidative coupling of methane to ethylene, Journal of Energy Chemistry, vol. 24, 2015, 394–400.10.1016/j.jechem.2015.06.007Search in Google Scholar

[23] Litawa B., Michorczyk P., Ogonowski J,. Influence of CO2 on the catalytic performance of La2O3/CeO2 and CaO/CeO2 catalysts in the oxidative coupling of methane, Polish Journal of Chemical Technology, vol 15, 2013, 22–26.10.2478/pjct-2013-0005Search in Google Scholar

[24] Xu Y., Yu L., Cai C., Huang J., Guo X., a study of the oxidative coupling of methane over SrO-La2O3/CaO catalysts by using CO2 as a probe, Catal. Lett., vol. 35, 1995, 215–231.10.1007/BF00807178Search in Google Scholar

[25] Kolts JH., Kukes S.G., Catalytic oxidation of carbon monoxide, USA. Patent. 4808394. Pub.28.02.1989.Search in Google Scholar

[26] Kahlich M.J., Gasteiger A., Behm R.J., Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3, Journal of Catalysis, vol. 171, 1997, 93–105.10.1006/jcat.1997.1781Search in Google Scholar

[27] Mariño F., Descorme C., Duprez D., Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX), Applied Catalysis B: Environmental, vol. 54, 2004, 59–66.10.1016/j.apcatb.2004.06.008Search in Google Scholar

[28] Oh S.H., Sinkevitch R.M., Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation, Journal of Catalysis, vol. 142, 1993, 254–262.10.1006/jcat.1993.1205Search in Google Scholar

[29] Avgouropoulos G., Ioannides T., Papadopoulou Ch., Batista J., Hocevar S., Matralis H.K., A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3and CuO–CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Today, vol. 75, 2002, 157–167.10.1016/S0920-5861(02)00058-5Search in Google Scholar

[30] Bethke G.K., Kung H.H., Selective CO oxidation in a hydrogen-rich stream over Au/γ-Al2O3 catalysts, Applied Catalysis A: General, vol. 194, 2000, 43–53.10.1016/S0926-860X(99)00352-XSearch in Google Scholar

[31] Grisel R.J.H., Nieuwenhuys B.E., Selective Oxidation of CO, over Supported Au Catalysts, Journal of Catalysis, vol. 199, 2001, 48–59.10.1006/jcat.2000.3121Search in Google Scholar

[32] Bond G.C., Thompson D.T., Gold-Catalysed Oxidation of Carbon Monoxide, Gold Bulletin, vol. 33, 2000, 41–50.10.1007/BF03216579Search in Google Scholar

[33] Sun X., Su H., Lin Q., Han Ch., Zheng Y., Sun L., Qi C., Au/Cu–Fe–La–Al2O3: a highly active, selective and stable catalysts for preferential oxidation of carbon monoxide, Applied Catalysis A: General, vol. 527, 2016, 19–29.10.1016/j.apcata.2016.08.014Search in Google Scholar

[34] Teng Y., Sakurai H., Ueda A., Kobayashi T., Oxidative removal of co contained in hydrogen by using metal oxide catalysts, International Journal of Hydrogen Energy, vol. 24, 1999, 355–358.10.1016/S0360-3199(98)00083-4Search in Google Scholar

[35] Liu W., Flytzani-Stephanopoulos M., Total Oxidation of Carbon Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: I. Catalyst Composition and Activity, Journal of Catalysis, vol. 153, 1995, 304–316.10.1006/jcat.1995.1132Search in Google Scholar

[36] Liu W., Flytzani-Stephanopoulos M., Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: II. Catalyst Characterization and Reaction-Kinetics, Journal of Catalysis, vol. 153,1995, 317–332.10.1006/jcat.1995.1133Search in Google Scholar

[37] Avgouropoulos G., Ioannides T., Matralis H. K., Batista J., Hocevar S., CuO–CeO2 mixed oxide catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Letters Vol. 73, 2001, 33–40.10.1023/A:1009013029842Search in Google Scholar

[38] Hung-Kuan Lin H-K., Chiu H-Ch., Tsai H-Ch., Chien S-H., Wang Ch-B., Synthesis, characterization and catalytic oxidation of carbon monoxide over cobalt oxide, Catalysis Letters, vol. 88, 2003, 169–174.Search in Google Scholar

[39] Wangcheng Z., Xinye Z., Yanglong G., Li W., Yun G., Guanzhong L., Synthesis of mesoporous CeO2-MnOx binary oxides and their catalytic performances for CO oxidation, Journal of Rare Earths, Vol. 32, 2014, 146–152.10.1016/S1002-0721(14)60044-2Search in Google Scholar

[40] Li Z., Hound G.B., a Review on Complete Oxidation of Methane at Low Temperatures, Journal of Natural Gas Chemistry, vol. 12, 2003, 153–160.Search in Google Scholar

[41] Stasinska B., Katalityczne utlenianie metanu z powietrza wentylacyjnego kopalń, https://www.researchgate.net/publication/267544218 (access: 11.04.16).Search in Google Scholar

[42] Qu Z., Cheng M., Huang W., Bao X., Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts, Journal of Catalysis, vol. 229, 2005, 446–458.10.1016/j.jcat.2004.11.043Search in Google Scholar

[43] Imamura S., Yamada H., Utani K., Combustion activity of Ag/CeO2 composite catalyst, Applied Catalysis A: General, vol. 192, 2000, 221–226.10.1016/S0926-860X(99)00344-0Search in Google Scholar