Open Access

Bending fatigue strength coefficient the low carbon steel with impurities


Cite

Adamczyk, M., Niżnik-Harańczyk, B., Pogorzałek, J., 2016. Wpływ technologii wytapiania stali z dodatkiem stopowym 3÷5% al na rodzaj i morfo-logię wtrąceń niemetalicznych. Prace Instytutu Metalurgii Żelaza, 2(68), 24-32 (In Polish).Search in Google Scholar

Beretta, S., Murakami, Y., 2001. Largest-Extreme-Value Distribution Analysis of Multiple Inclusion Types in Determining Steel Cleanliness. Met. And Mat. Trans. B, 32B, 517-523.10.1007/s11663-001-0036-4Search in Google Scholar

Cummings, H.N., Stulen, F.B., Schulte,W.C., 1957. Relation of inclusions to the fatigue properties of SAE 4340 steel. Trans ASM, 49, 482-516.Search in Google Scholar

Drozin, A.D., 2016. Calculating of the True Sizes and the Numbers of Spherical Inclusions in Metal. Metallography, Microstructure, and Analysis, 6(3), 240-246.10.1007/s13632-017-0354-9Open DOISearch in Google Scholar

Gerasinm S, Kaliszm D., 2015. Modeling of the Mn and S Microsegregation During Continuous Casting of Rail Steel. Archives of Foundry Engineeringm 15(4), 35-38.Search in Google Scholar

Lenkovskiym T.M., Kulyk V.V., Duriaginam Z.A., Kovalchukm R.A., Topil-nytskyym V.H., Vira, V.V., Tepla, T.L., 2017, Mode I and mode II fatigue crack growth resistance characteristics of high tempered 65G steel. Archives of Materials Science and Engineering, 84(1), 34-41.10.5604/01.3001.0010.3029Search in Google Scholar

Lipiński, T., 2015. The influence of the distribution of nonmetallic inclusion on the fatigue strength coefficient of high purity steels. Journal of Achievements of Materials and Manufacturing Engineering, 69(1), 18-25.Search in Google Scholar

Lipiński, T., Wach, A., 2012. The Effect of the Production Process and Heat Processing Parameters on the Fatigue Strength of High-Grade Medium-Carbon Steel. 2), 55-60. Archives of Foundry Engineering, 12(10.2478/v10266-012-0036-7Search in Google Scholar

Lipiński, T., Wach, A., 2015. Dimensional structure of non-metallic inclusions in high-grade medium carbon steel melted in an electric furnace and subjected to desulfurization. Solid State Phenomena, 223, 46-53.10.4028/www.scientific.net/SSP.223.46Search in Google Scholar

Lis, T., 2002. Modification of non-metallic dispersion phase in steel. Met. and Foundry Eng. 1(28), 29-45.Search in Google Scholar

Mazur, M., Mikova, K., 2016. Impact Resistance of High Strength Steels. Procidings Materialstoday 3(4), 1060-1063. https://doi.org/10.1016/j.matpr.2016.03.04810.1016/j.matpr.2016.03.048Open DOISearch in Google Scholar

Murakami, Y., 2002. Metal fatigue: Effects of small defects and inclusions. Amsterdam Elsevier.Search in Google Scholar

Selejdak, J., Ulewicz, R., Ingaldi, M. 2014. The evaluation of the use of a device for producing metal elements applied in civil engineering. 23rd International Conference on Metallurgy and Materials METAL, 1882-1888.Search in Google Scholar

Ulewicz, R., 2016. Influence of selected technological factors on fatigue strength. Czasopismo Techniczne, Mechanika 3-M, 10, 9-14.Search in Google Scholar

Ulewicz, R., Szataniak, P, 2016. Fatigue Cracks of Strenx Steel. Science Direct Materials Today: Proceedings, 3, 1195-1198.10.1016/j.matpr.2016.03.007Open DOISearch in Google Scholar

Zhang, J.M., Zhanga, J.F., Yang, Z.G., Li, G.Y., Yao, G., Li, S.X., Hui, W.J., Weng, Y.Q. 2005. Estimation of maximum inclusion size and fatigue strength in high-strength ADF1 steel. Materials Science and Engineering A, 394.10.1016/j.msea.2004.11.015Search in Google Scholar