Open Access

Numerical Analysis of Stress and Temperature in the Friction Stir Welding (FSW) Process of Steel


Cite

Thomas W.M., Murch M.G., Nicholas E.D., Temple-Smith P., Needham J.Ch., Dawes Ch.J.: Improvements relating to friction welding. European patent application, EP0653265A2, European Patent Office, 27.11.1992. Search in Google Scholar

Thomas W.M., Nicholas E.D.: Friction stir welding for the transportation industries, Materials&Design, vol. 18, pp. 269-73, 1997, doi:10.1016/S0261-3069(97)00062-9. Search in Google Scholar

Neto D.M., Neto P.: Numerical modeling of friction stir welding process: a literature review. The International Journal of Advanced Manufacturing Technology, vol. 65, pp. 115-126, 2013, doi:10.1007/s00170-012-4154-8. Search in Google Scholar

Abaqus/CAE 2017. Simulia User Assistance. Johnston, RI, USA: Dassault Systemes Simulia Corp., 2017. Search in Google Scholar

Mishra R.S., Ma Z.Y.: Friction stir welding and processing, Material Science and Engineering, vol. 50, pp. 1-78, 2005, doi:10.1016/j.mser.2005.07.001. Search in Google Scholar

Sun Y., Gong W., Feng J., Lu G., Zhu R., Li Y.: A Review of the Friction Stir Welding of Dissimilar Materials between Aluminum Alloys and Copper. Metals, vol. 12, pp. 675, 2022, doi:10.3390/met12040675. Search in Google Scholar

Nandan R., DebRoy T., Bhadeshia H.K.D.H.: Recent advances in friction-stir welding – Process, weldment structure and properties, Progress in Material Science, vol. 53, pp. 980-1023, 2008, doi:10.1016/j.pmatsci.2008.05.001. Search in Google Scholar

Fabregas Villegas J., Martinez Guarin A., Unfried-Silgado J.: A Coupled Rigid-viscoplastic Numerical Modeling for Evaluating Effects of Shoulder Geometry on Friction Stir-welded Aluminum Alloys, International Journal of Engineering, vol. 32, pp. 313-321, 2019. Search in Google Scholar

Gao S., Zhou L., Sun G., Zhao H., Chu X., Li G., Zhao H.: Influence of Welding Speed on Microstructure and Mechanical Properties of 5251 Aluminum Alloy Joints Fabricated by Self-Reacting Friction Stir Welding, Materials, vol. 14, pp. 6178, 2021, doi:10.3390/ma14206178. Search in Google Scholar

Dialami N., Cervera M., Chiumenti M.: Numerical Modelling of Microstructure Evolution in Friction Stir Welding (FSW), Metals, vol. 8, pp. 183, 2018, doi:10.3390/met8030183. Search in Google Scholar

Dialami N., Chiumenti M., Cervera M.: Material flow visualization in Friction Stir Welding via particle tracing, International Journal of Material Forming, vol. 8, pp. 167-181, 2015, doi:10.1007/s12289-013-1157-4. Search in Google Scholar

Chao Y.J., Qi X., Tang W.: Heat Transfer in Friction Stir Welding – Experimental and Numerical Studies, Journal of Manufacturing Science and Engineering, vol. 125, pp. 138-145, 2003, doi:10.1115/1.1537741. Search in Google Scholar

Xie G.M., Ma Z.Y., Geng L.: Partial recrystallization in the nugget zone of friction stir welded dual-phase Cu–Zn alloy, Philosophical Magazine, vol. 89, pp. 1505-1516, 2009, doi:10.1080/14786430903019040. Search in Google Scholar

Fonda R.W., Bingert J.F.: Microstructural Evolution in the Heat-Affected Zone of a Friction Stir Weld, Metallurgical and Materials Transactions A, vol. 35, pp. 1487-1499, 2004, doi:10.1007/s11661-004-0257-7. Search in Google Scholar

Richmire S., Hall K., Haghsnehas M.: Design of experiment study on hardness variations in friction stir welding of AM60 Mg alloy, Journal of Magnesium and Alloys, vol. 6, pp. 215-228, 2018, doi:10.1016/j.jma.2018.07.002. Search in Google Scholar

Liu X., Xie P., Wimpory R., Li W., Lai R., Li M., Chen D., Liu Y., Zhao H.: Residual Stress, Microstructure and Mechanical Properties in Thick 6005A-T6 Aluminium Alloy Friction Stir Welds, Metals, vol. 9, pp. 803, 2019, doi:10.3390/met9070803. Search in Google Scholar

Shyamlal Ch., Shanmugavel R., Winowlin Jappes J.T., Nair A., Ravichandran M., Abuthakeer S.S., Prakash Ch., Dixit S., Vatin N.I.: Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy, Materials, vol. 15, pp. 5165, 2022, doi:10.3390/ma15155165. Search in Google Scholar

Schenider J., Beshears R., Nunes Jr. A.C.: Interfacial sticking and slipping in the friction stir welding process, Materials Science and Engineering A, vol. 435-436, pp. 297-304, 2006, doi:10.1016/j.msea.2006.07.082. Search in Google Scholar

Kossakowski P.G., Wciślik W., Bakalarz M.: Macrostructural Analysis Of Friction Stir Welding (FSW) Joints, Journal of Mechanical Engineering Research, vol. 1, pp. 28-33, 2018, doi:10.30564/jmer.v1i1.486. Search in Google Scholar

Kossakowski P.G., Wciślik W., Bakalarz M.: Effect of selected friction stir welding parameters on mechanical properties of joints, Archives of Civil Engineering, vol. 65, pp. 51-62, 2019, doi:10.2478/ace-2019-0046. Search in Google Scholar

Richards B.: Microstructure-Property Correlations in Friction Stir Welded Al6061-T6 Alloys. BSc thesis, Worcester Polytechnic Institute, Worcester, Massachusetts, USA, 2010. Search in Google Scholar

Meyghani B., Awang M.B., Emamian S.S., Nor M.K.B.M., Pedapati S.R.: A Comparison of Different Finite Element Methods in the Thermal Analysis of Friction Stir Welding (FSW). Metals, vol. 7(10), pp. 450, 2017, doi:10.3390/met7100450. Search in Google Scholar

Lorrain O., Serri J., Favier V., Zahrouni H., El Hadrouz M.: A contribution to a critical review of friction stir welding numerical simulation, Journal of Mechanics of Materials and Structures, vol. 4(2), pp. 351-369, 2009, doi:10.2140/jomms.2009.4.351. Search in Google Scholar

Oliphant A.H.: Numerical Modeling of Friction Stir Welding: A Comparison of Alegra and Forge3, MSc thesis, Brigham Young University, Provo, Utah, USA, 2004. Search in Google Scholar

Guerdoux S.: Numerical simulation of the friction stir welding process, PhD thesis, l’Ecole des Mines de Paris, Paris, France, 2007. Search in Google Scholar

Arakere A.P.: Computational modeling of the friction stir welding (FSW) process and of the performance of FSW joints, MSc thesis, Clemson University, Clemson, South Carolina, USA, 2013. Search in Google Scholar

Bhattacharjee R., Biswas P.: Review on thermo-mechanical and material flow analysis of dissimilar friction stir welding, Welding International, vol. 35, pp. 295-332, 2021, doi:10.1080/09507116.2021.1992256. Search in Google Scholar

Sen S., Murugesan J.: Experimental and numerical analysis of friction stir welding: a review. Eng Res Express 2022, 4, 032004. https://doi.org/10.1088/2631-8695/ac7f1e. Search in Google Scholar

Meyghani B., Awang M.B., Momeni M., Rynkovskaya M.: Development of a Finite Element Model for Thermal Analysis of Friction Stir Welding (FSW), IOP Conference Series: Materials Science and Engineering, vol. 495, pp. 012101, 2019, doi:10.1088/1757-899X/495/1/012101. Search in Google Scholar

Colegrove P.A., Shercliff H.R.: Experimental and numerical analysis of aluminium alloy 7075-T7351 friction stir weld, Science and Technology of Welding and Joining, vol. 8:5, pp. 360-368, 2003, doi:10.1179/136217103225005534. Search in Google Scholar

Colegrove P.A., Shercliff H.R.: 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, Journal of Materials Processing Technology, vol. 169, pp. 320-327, 2005, doi:10.1016/j.jmatprotec.2005.03.015. Search in Google Scholar

Jacquin D., de Meester B., Simar A., Deloison D., Montheillet F., Desrayaud C.: A simple Eulerian thermomechanical modeling of friction stir welding, Journal of Materials Processing Technology, vol. 211, pp. 57-65, 2011, doi:10.1016/j. jmatprotec.2010.08.016. Search in Google Scholar

Dialami N., Chiumenti M., Cervera M., de Saracibar C.A.: Local and global approaches to Friction Stir Welding. Barcelona, Spain: International Center for Numerical Methods in Engineering, 2016. Search in Google Scholar

Dialami N., Chiumenti M., Cervera M., de Saracibar C.A.: Challenges in Thermo-mechanical Analysis of Friction Stir Welding Processes, Archives of Computational Methods in Engineering, vol. 24, pp. 189-225, 2017, doi:10.1007/s11831-015-9163-y. Search in Google Scholar

Gao E., Zhang X., Liu C., Ma Z.: Numerical simulations on material flow behaviors in whole process of friction stir welding, Transactions of Nonferrous Metals Society of China, vol. 28, pp. 2324-2334, 2018, doi:10.1016/S1003-6326(18)64877-0. Search in Google Scholar

Zhao H.: Friction stir welding (FSW) simulation using an arbitrary Lagrangian – Eulerian (ALE) moving mesh approach, PhD thesis, West Virginia University, Morgantown, West Virginia, USA, 2005. Search in Google Scholar

Chauhan P., Jain R., Pal S.K., Singh S.B.: Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method, Journal of Manufacturing Processes, vol. 34, pp. 158-166, 2018, doi:10.1016/j.jmapro.2018.05.022. Search in Google Scholar

Kishta E.E., Abed F.H., Darras B.M.: Nonlinear Finite Element Simulation of Friction Stir Processing of Marine Grade 5083 Aluminum Alloy, Engineering Transactions, vol. 62, pp. 313-328, 2014. Search in Google Scholar

Li K., Jarrar F., Sheikh-Ahmad J., Ozturk F.: Using coupled Eulerian Lagrangian formulation for accurate modeling of the friction stir welding process, Procedia Engineering, 207, 574-579, 2017, doi:10.1016/j.proeng.2017.10.1023. Search in Google Scholar

Chen C.M., Kovacevic R.: Finite element modeling of friction stir welding – thermal and thermomechanical analysis, International Journal of Machine Tools and Manufacture, vol. 43, pp. 1319-1326, 2003, doi: 10.1016/S0890-6955(03)00158-5. Search in Google Scholar

Schmidt H., Hattel J.: A local model for the thermomechanical conditions in friction stir welding, Modelling and Simulation in Materials Science and Engineering, vol. 13, pp. 77-93, 2004, doi:10.1088/0965-0393/13/1/006. Search in Google Scholar

Schmidt H., Hattel J.: Thermal modelling of friction stir welding, Scriptia Materialia, vol. 58, pp. 332-337, 2008, doi:10.1016/j.scriptamat.2007.10.008. Search in Google Scholar

Hamilton C., Dymek S., Sommers A.: A thermal model of friction stir welding in aluminum alloys, International Journal of Machine Tools and Manufacture, vol. 48, pp. 1120-1130, 2008, doi:10.1016/j.ijmachtools.2008.02.001. Search in Google Scholar

Mehta M., Reddy G.M., Rao A.V., De A.: Numerical modeling of friction stir welding using the tools with polygonal pins, Defence Technology, vol. 11, pp. 229-236, 2015, doi:10.1016/j.dt.2015.05.001. Search in Google Scholar

Chiumenti M., Cervera M., de Saracibar C.A., Dialami N.: Numerical modeling of friction stir welding processes, Computer Methods in Applied Mechanics and Engineering, vol. 254, pp. 353-369, 2013, doi:10.1016/j.cma.2012.09.013. Search in Google Scholar

Santiago D.H., Lombera G., Urquiza S., Cassanelli A., de Vedia L.A.: Numerical Modeling of Welded Joints by the “Fric-tion Stir Welding” Process, Materials Research, vol. 7, pp. 569-574, 2004, doi:10.1590/S1516-14392004000400010. Search in Google Scholar

Ulysse P.: Three-dimensional modeling of the friction stir-welding process, International Journal of Machine Tools and Manufacture, vol. 42, pp. 1549-1557, 2002, doi:10.1016/S0890-6955(02)00114-1. Search in Google Scholar

Zhang Z.: Comparison of two contact models in the simulation of friction stir welding process, Journal of Material Science, vol. 43, pp. 5867-5877, 2008, doi:10.1007/s10853-008-2865-x. Search in Google Scholar

Schmidt H., Hattel J., Wert J.: An analytical model for the heat generation in friction stir welding, Modelling and Simulation in Material Science and Engineering, vol. 12, pp. 143-157, 2003, doi:10.1088/0965-0393/12/1/013. Search in Google Scholar

Zhu X.K., Chao Y.J.: Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel, Journal of Materials Processing Technology, vol. 146, pp. 263-272, 2004, doi:10.1016/j. jmatprotec.2003.10.025. Search in Google Scholar

Abdullah I., Mohammed S.S., Abdallah S.A.: Artificial neural network modelling of the surface roughness of friction stir welded AA7020-T6 aluminum alloy, Engineering Research Journal, vol. 1, pp. 1-5, 2020, doi:10.21608/erjsh.2020.228168. Search in Google Scholar

Okuyucu H., Kurt A., Arcaklioglu E.: Artificial neural network application to the friction stir welding of aluminum plates, Materials&Design, vol. 28, pp. 78-84, 2007, doi:10.1016/j.matdes.2005.06.003. Search in Google Scholar

Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych. Część 1. Nieustalony przepływ ciepła z uwzględnieniem przejść fazowych (Thermo-metallurgical phenomena in FE simulation of heat treatment for steel. Part 1: Unsteady heat transfer and phase change phenomena). Zeszyty Naukowe, Budownictwo, vol. 143, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005. Search in Google Scholar

Jemioło S., Gajewski M.: Symulacja MES obróbki cieplnej wyrobów stalowych z uwzględnieniem zjawisk termometalurgicznych. Część 2. Przykłady numeryczne z zastosowaniem programu SYSWELD (Thermo-metallurgical phenomena in FE simulation of heat treatment for steel. Part 2: Numerical examples using SYSWELD program). Zeszyty Naukowe, Budownictwo, vol. 143, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005. Search in Google Scholar

Jemioło S., Gajewski M.: Zastosowanie programu SYSWELD w modelowaniu resztkowych naprężeń pospawalniczych (SYSWELD program application in modelling of residual postwelding stresses). Zeszyty Naukowe, Budownictwo, z.143, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005. Search in Google Scholar

Hashemzadeh M., Garbatov Y., Guedes Soares C., O’Connor A.: Friction stir welding induced residual stresses in thick steel plates from experimental and numerical analysis, Ships and Offshore Structures, vol. 17, pp. 1053-1061, 2021, doi:10.1080/17445302.2021.1893531. Search in Google Scholar

Chang P.H., Teng T.L.: Numerical and experimental investigations on the residual stresses of the butt-welded joints, Computational Materials Science, vol. 29, pp. 511-522, 2004, doi:10.1016/j.commatsci.2003.12.005. Search in Google Scholar

Jeyakumar M., Christopher T., Influence of residual stresses on failure pressure of cylindrical pressure vessels, Chinese Journal of Aeronautics, vol. 26, pp. 1415-1421, 2013, doi:10.1016/j.cja.2013.07.025. Search in Google Scholar

Giorjão R.A.R., Avila J.A., Escobar J.D., Ferrinho Pereira V., Marinho R.R., Torres Piza Paes M., Fonseca E.B., Costa A.M.S., Terada M.: The study of volumetric wearing of PCBN/W-Re composite tool during friction stir processing of pipeline steels (X70) plates, The International Journal of Advanced Manufacturing Technology, vol. 114, pp. 1555-1564, 2021, doi:10.1007/s00170-021-06932-8. Search in Google Scholar

Kossakowski P., Wciślik W., Bakalarz M.: Selected aspects of application of aluminium alloys in building structures, Structure and Environment, vol. 9(4), pp. 256-263, 2017, https://sae.tu.kielce.pl/33/S&E_nr_33_Art_4.pdf. Search in Google Scholar

Wciślik W., Kossakowski P., Sokołowski P.: Stainless steel in building structures - advantages and examples of application, Structure and Environment, vol. 9(3), pp. 191-198, 2017, https://sae.tu.kielce.pl/32/S&E_NR_32_Art_4.pdf. Search in Google Scholar

eISSN:
2657-6902
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Architecture and Design, Architecture, Architects, Buildings, Construction, Materials, Engineering, Introductions and Overviews, other