Cite

Jandal JM. Comparative aspects of goat and sheep milk. Small Rumin Res. 1996;22:177-185. DOI: 10.1016/S0921-4488(96)00880-2.10.1016/S0921-4488(96)00880-2Search in Google Scholar

Kolaczkowski ST, Plucinski P, Beltran FJ, Rivas FJ, McLurgh DB. Wet air oxidation: a review of process technologies and aspects in reactor design. Chem Eng J. 1999;73:143-160. DOI: 10.1016/S1385-8947(99)00022-4.10.1016/S1385-8947(99)00022-4Search in Google Scholar

Bhargava SK, Tardio J, Prasad J, Föger K, Akolekar DB, Grocott ST. Wet oxidation and catalytic wet oxidation. Ind Eng Chem Res. 2006;45(4):1221-1258. DOI: 10.1021/ie051059n.10.1021/ie051059nSearch in Google Scholar

Khan Y, Anderson GK, Elliott DJ. Wet oxidation of activated sludge. Water Res. 1999;33(7):1681-1687. DOI: 10.1016/S0043-1354(98)00387-X.10.1016/S0043-1354(98)00387-XSearch in Google Scholar

Genc N, Yonsel S, Dagasan L, Onar AN. Wet oxidation: a pre-treatment procedure for sludge. Waste Manage. 2002;22(6):611-6. DOI: 10.1016/S0956-053X(02)00040-5.10.1016/S0956-053X(02)00040-5Search in Google Scholar

Mucha J, Zarzycki R. Analysis of wet oxidation process after initial thermohydrolysis of excess sewage sludge. Water Res. 2008;42:3025-3032. DOI:10.1016/j.watres.2007.11.012.10.1016/j.watres.2007.11.01218472124Search in Google Scholar

Imbierowicz M, Chacuk A. The advanced kinetic model of the excess activated sludge wet oxidation. Polish J Chem Technol. 2006;8(2):16-19.Search in Google Scholar

Suárez-Ojeda ME, Metcalfe IS, Font J, Carrera J. Calibration of a kinetic model for wet air oxidation (WAO) of substituted phenols: Influence of experimental data on model prediction and practical identifiability. Chem Eng J. 2009;150:328-336. DOI: 10.1016/j.cej.2009.01.006.10.1016/j.cej.2009.01.006Search in Google Scholar

García-Molina V, Kallas J, Esplugas S. Wet oxidation of 4-chlorophenol: Kinetic study. Chem Eng J. 2007;126(1):59-65. DOI: 10.1016/j.cej.2006.05.022.10.1016/j.cej.2006.05.022Search in Google Scholar

Li L, Chen P, Gloyna EF. Generalized kinetic model for wet oxidation of organic compounds. AIChE J. 1991;37(11):1687-1697. DOI: 10.1002/aic.690371112.10.1002/aic.690371112Search in Google Scholar

Chia YN, Latusek MP, Holles JH. Catalytic wet oxidation of lactose. Ind Eng Chem Res. 2008;47(12):4049-4055. DOI: 10.1021/ie701779u.10.1021/ie701779uSearch in Google Scholar

Murzina EV, Tokarev AV, Korda's K, Karhu H, Jyri-Pekka Mikkola, Murzin DY. D-lactose oxidation over gold catalysts. Catal Today. 2008;131:385-392. DOI: 10.1016/j.cattod.2007.10.080.10.1016/j.cattod.2007.10.080Search in Google Scholar

Patrick A, Abraham M. Evaluation of a monolith-supported Pt/Al2O3 catalyst for wet oxidation of carbohydrate-containing waste streams. Environ Sci Technol. 2000;34:3480-3488. DOI: 10.1021/es000887z.10.1021/es000887zSearch in Google Scholar

Hendriks HEJ, Kuster BFM, Marin GB. The effect of bismuth on the selective oxidation of lactose on supported palladium catalysts. Carbohydr Res. 1990;204:121-129. DOI: 10.1016/0008-6215(90)84027-R.10.1016/0008-6215(90)84027-RSearch in Google Scholar

Marquardt D. An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math. 1963;11:431-441. DOI: 10.2478/v10216-011-0004-010.2478/v10216-011-0004-0Search in Google Scholar

ISSN:
1898-6196
Language:
English