Cite

TSUMURA, A.—KOEZUKA, H.—AMDO, T.: Macromolecular Electronic Device — Field-Effect Transistor with a Polythiophene Thin-Film, Appl. Phys. Lett. 49 (1986), 1210-1212.10.1063/1.97417Search in Google Scholar

BRUSSO, J. L.—HIRST, O. D.—DADVAND, A.—GANESAN, S.—CICOIRA, F.—ROBERTSON, C. M.—OAKLEY, R. T.—ROSEI, F.—PEREPICHKA, D. F.: Two-Dimensional Structural Motif in Thienoacene Semiconductors: Synthesis, Structure, and Properties of Tetrathienoanthracene Isomers, Chem. Mater. 20 (2008), 2484-2494 and citations reported therein.10.1021/cm7030653Search in Google Scholar

HE, Y.—CHEN, Z. H.—ZHENG, Y.—NEWMAN, C.—QUINN, J. R.—DOTZ, F.—KASTLER, M.—FACCHETTI, A.: A High-Mobility Electron-Transporting Polymer for Printed Transistors, Nature 457 (2009), 679-686.10.1038/nature0772719158674Search in Google Scholar

LI, L.—TANG, Q.—LI, H.—YANG, X.—HU, W.—SONG, Y.—SHUAI, Z.—XU, W.—LIU, Y.—ZHU, D.: An Ultra Closely π-Stacked Organic Semiconductor for High Performance Field-Effect Transistors, Adv. Mater. 19 (2007), 2613-2617.10.1002/adma.200700682Search in Google Scholar

TAKEYA, Y.—YAMAGISHI, M.—TOMINARI, Y.—HIRAHARA, R.—NAKAZAWA, Y.—NISHIKAWA, T.—KAWASE, T.—SHIMODA—OGAWA, S.: Very High Mobility Organic Single Crystal Transistors with In-Crystal Conduction Channels, Appl. Phys. Lett. 90 (2007), 102120.10.1063/1.2711393Search in Google Scholar

JURCHESCU, O. D.—POPINCIUS, M.—VAN WEES, B. J.—PALSTRA, T. T. M.: Interface-Controlled, High-Mobility Organic Transistors Adv. Mater.Search in Google Scholar

DONG, H.—WANG, C.—HU, W.: High Performance Organic Semiconductors for Field-Effect Transistors, Chem. Commun. 46 (2010), 5211-5222.10.1039/c0cc00947d20585698Search in Google Scholar

ZAUMSEIL, J.—SIRRINGHAUS, H.: Electron and Ambipolar Transport in Organic Field-Effect Transistors, Chem. Rev. 107 (2007), 1297-1323 and citations reported therein.10.1021/cr050154317378616Search in Google Scholar

STREET, R. A.—SALEO, A.: Contact Effects in Polymer Transistors, Appl. Phys. Lett. 81 (2002), 2887-2890.10.1063/1.1512950Search in Google Scholar

ANTHONY, J. E.—BROOKS, J. S.—EATON, D. L.—PARKIN, S. R.: Functionalized Pentacene: Improved Electronic Properties from Control of Solid-State Order, J. Am. Chem. Soc. 123 (2001), 9482.10.1021/ja016245911562247Search in Google Scholar

GOLDMAN, C.—HAAS, S.—KRELLNER, C.—PERNSTICH, K. P.—GUNDLACH, D. J.—BATTLOG, B.: Hole Mobility in Organic Single Crystals Measured by a "Flip-Crystal" Field-Effect Technique, J. Appl. Phys. 96 (2004), 2080-2086.10.1063/1.1767292Search in Google Scholar

DA SILVA FILHO, D. A.—KIM, E.-G.—BRDAS, J.-L.: Transport Properties in the Rubrene Crystal: Electronic Coupling and Vibrational Reorganization Energy, Adv. Mater 17 (2005), 1072-1076.10.1002/adma.200401866Search in Google Scholar

XIAO, K.—LIU, Y.—QI, T.—ZHANG, W.—WANG, F.—GAO, J.—QUI, W.—MA, Y.—CIU, G.—CHEN, S.—ZHAN, X.—YU, G.—QIN, J.—HU, W.—ZHU, D. J.:: A Highly π-Stacked Organic Semiconductor for Field-Effect Transistors Based on Linearly Condensed Pentathienoacene, J. Am. Chem. Soc. 127 (2005), 13281-13286.10.1021/ja052816bSearch in Google Scholar

MISHRA, A.—MA, C.-Q.—BÄUERLE, P.: Functional Oligothiophenes: Molecular Design for Multidimensional Nanoarchitectures and Their Applications, Chem. Rev. 109 (2009), 1141-1276.10.1021/cr8004229Search in Google Scholar

WOLFER, P.—MÜLLER, C.—SMITH, P., BAKLAR, M. A.—STINGELIN-STUTZMAN, N.: α-Quaterthiophene-Polyethylene Blends: Phase Behaviour and Electronic Properties, Synth. Met. 157 (2007), 827-833 and citations reported therein.10.1016/j.synthmet.2007.08.014Search in Google Scholar

GARNIER, F.—HAJLAOUI, R.—YASSAR, A.—SRIVASTAVA, P.: All-Polymer Field-Effect Transistor Realized by Printing Techniques, Science 265 (1994), 1684-1686.10.1126/science.265.5179.1684Search in Google Scholar

MENG, H.—SUN, F.—GOLDFINGER, M. B.—JAYCOX, G. D.—LI, Z.—MARSHALL, W. J.—BLACKMAN, G. S.: High-Performance, Stable Organic Thin-Film Field-Effect Transistors Based on Bis-5-alkylthiophen-2-yl-2,6-anthracene Semiconductors, J. Am. Chem. Soc. 127 (2005), 2406-2407.10.1021/ja043189dSearch in Google Scholar

ICHIKAWA, M.—YANAGI, H.—SHIMIZU, Y.—HOTTA, S.—SUGANUMA, N.—KOYAMA, T.—TANIGUCHI, Y.: Organic Field-Effect Transistors made of Epitaxially Grown Crystals of a Thiophene/Phenylene Co-Oligomer, Adv. Mater. 14 (2002), 1272-1275.10.1002/1521-4095(20020916)14:18<1272::AID-ADMA1272>3.0.CO;2-FSearch in Google Scholar

YOON, M.-H.—FACCHETTI, A.—STERN, C. E.—MARKS, T. J.: Fluorocarbon-Modified Organic Semiconductors: Molecular Architecture, Electronic, and Crystal Structure Tuning of Arene-versus Fluoroarene-Thiophene Oligomer Thin-Film Properties, J. Am. Chem. Soc. 128 (2006), 5792-5801.10.1021/ja060016aSearch in Google Scholar

LETIZIA, J. A.—FACCHETTI, A.—STERN, C. E.—RATNER, M. A.—MARKS, T. J.: High Electron Mobility in Solution-Cast and Vapor-Deposited Phenacyl-Quaterthiophene-Based Field-Effect Transistors: Toward N-Type Polythiophenes, J. Am. Chem. Soc. 127 (2005), 13476-13477.10.1021/ja054276oSearch in Google Scholar

SHUKLA, D.—NELSON, S. F.—FREEMAN, D. C.—RAJESWARAN, M.—AHEARN, W. G.—MEYER, D. M.—CAREY, J. T.: Thin-Film Morphology Control in Naphthalene-Diimide-Based Semiconductors: High Mobility n-Type Semiconductor for Organic Thin-Film Transistors, Chem. Mater. 20 (2008), 7486-7491.10.1021/cm802071wSearch in Google Scholar

SEE, K. C.—LANDIS, C.—SARJEANT, A.—KATZ, H. E.: Easily Synthesized, Highly Crystalline Naphthalenetetracarboxylic Diimide Semiconductors with High Electron Mobility in Air, Chem. Mater. 20 (2008), 3609-3616.10.1021/cm7032614Search in Google Scholar

MOLINARI, A. S.—ALVES, H.—CHEN, Z.—FACHETTI, A.—MORPURGO, A. F.: High Electron Mobility in Vacuum and Ambient for PDIF-CN2 Single-Crystal Transistors, J. Am. Chem. Soc. 131 (2009), 2462-2463.10.1021/ja809848ySearch in Google Scholar

ANTHOPOULOS, T. D.—SINGH, B.—MARJANOVIC, N.—SACRIFTCI, N. S.—MONTAIGNE, A.—SITTER, H.—CÖLLE, M.—DE LEEUW, D. M.: High Performance n-Channel Organic Field-Effect Transistors and Ring Oscillators Based on C60 Fullerene Films, Appl. Phys. Lett. 89 (2006), 213504.10.1063/1.2387892Search in Google Scholar

HOROVITZ, G.: Organic Field-Effect Transistors, Adv. Mater. 10 (1998), 365-377.10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-USearch in Google Scholar

SMITH, R. K.—LEWIS, P. A.—WEISS, P. S.: Patterning Self-Assembled Monolayers, Prog. Surf. Sci. 75 (2004), 1-68.10.1016/j.progsurf.2003.12.001Search in Google Scholar

TULEVSKI, G. S.—MIAO, Q.—FUKUTO, M.—ABRAM, R.—OCKO, B.—PINDAK, R.—STEIGERWALD, M. L.—KAGAN, C. R.—NUCKOLLS, C.: Attaching Organic Semiconductors to Gate Oxides: in Situ Assembly of Monolayer Field Effect Transistors, J. Am. Chem. Soc. 126 (2004), 15048-15050.10.1021/ja044101zSearch in Google Scholar

HANSON, E. L.—SCHWARTZ, J.—NICKEL, B.—KOCH, N.—DANISMAN, M. F.: Bonding Self-Assembled, Compact Organophosphonate Monolayers to the Native Oxide Surface of Silicon, J. Am. Chem. Soc. 125 (2003), 16074-16080.10.1021/ja035956zSearch in Google Scholar

NEVES, B. R. A.—SALMON, M. E.—RUSSEL, P. E.—TROUGHTON, E. B., jr.: Spread Coating of OPA on Mica: From Multilayers to Self-Assembled Monolayers, Langmuir 17 (2001), 8193-8198.10.1021/la010909aSearch in Google Scholar

GAINES, G. L., jr.: Insoluble Monolayers at Liquid-Gas Interfaces, Interscience Publisher, New York, 1966.Search in Google Scholar

MARMONT, P.—BATTAGLINI, N.—LANG, P.—HOROWITZ, G.—HWANG, J.—KAHN, A.—AMATO, C.—CALAS, P.: Improving Charge Injection in Organic Thin-Film Transistors with Thiol-Based Self-Assembled Monolayers, Org. Electron. 9 (2008), 419-424.10.1016/j.orgel.2008.01.004Search in Google Scholar

IZAWA, T.—MIYAZAKI, E.—TAKIMIYA, K.: Molecular Ordering of High-Performance Soluble Molecular Semiconductors and Re-Evaluation of Their Field-Effect Transistor Characteristics, Adv. Mater. 20 (2008), 3388-3392.10.1002/adma.200800799Search in Google Scholar

YAMAMOTO, T.—TAKIMIYA, K.: Facile Synthesis of Highly π-Extended Heteroarenes, Dinaphtho[2,3-b:2,3-f] chalcogenopheno [3,2-b]chalcogenophenes, and Their Application to Field-Effect Transistors, J. Am. Chem. Soc. 129 (2007), 2224-2225.10.1021/ja068429z17279756Search in Google Scholar

SUBRAMANIAN, S.—PARK, S. K.—PARKIN, S. R.—PODZOROV, V.—JACKSON, T. N.—ANTHONY, J. E.: Chromophore Fluorination Enhances Crystallization and Stability of Soluble Anthradithiophene Semiconductors, J. Am. Chem. Soc. 130 (2008), 2706-2707.10.1021/ja073235k18260664Search in Google Scholar

MENG, H.—SUN, F.—GOLDFINGER, M. B.—GAO, F.—LONDONO, D. J.—MARSHAL, W. J.—BLACKMAN, G. S.—DOBBS, K. D.—KEYS, D. E.: 2,6-Bis[2-(4-pentylphenyl) vinyl]anthracene: A Stable and High Charge Mobility Organic Semiconductor with Densely Packed Crystal Structure, J. Am. Chem. Soc. 128 (2006), 9304-9305.10.1021/ja062683+16848445Search in Google Scholar

SCHMIDT, R.—HAK OH, J.—SUN, Y.-S.—DEPPISCH, M.—KRAUSE, A.-M.—RADACKI, K.—BRAUNSCHWEIG, H.—KONEMANN, M.—ERK, P.—BAO, Z.—WÜRTNERF.: High-Performance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductors, J. Am. Chem. Soc. 131 (2009), 6215-6228.10.1021/ja901077a19354212Search in Google Scholar

GSÄNGER, M.—HAK OH, J.—KÖNEMANN, M.—WÖLFGANG HÖFFKEN, H.—KRAUSE, A.-M.—BAO, Z.—WÜRTHER, F.: A Crystal-Engineered Hydrogen-Bonded Octachloroperylene Diimide with a Twisted Core: An n-Channel Organic Semiconductor, Angew. Chem. Int. Ed. 49 (2010), 740-743.10.1002/anie.20090421519882605Search in Google Scholar

KATZ, H. E.—BAO, Z.—GILAT, S. L.: Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors, Acc. Chem. Res. 34 (2001), 359-369.10.1021/ar990114j11352714Search in Google Scholar

ZEIS, R.: Single Crystal Field-Effect Transistors based on Layered Semiconductors, PhD Thesis, Universität Konstantz, Germany, 2005.10.1063/1.1849438Search in Google Scholar

WARTA, W.—KARL, N.: Hot Holes in naphthalene: High, Electric-Field-Dependent Mobilities, Phys. Rev. B 32 (1985), 1172-1182.10.1103/PhysRevB.32.1172Search in Google Scholar

KLINE, R. J.—DELONGCHAMP, D. M.—FISCHER, D. A.—LIN, E. K.—HEENEY, MCCULLOCH, I.—TONEY, M. F.: Significant Dependence of Morphology and Charge Carrier Mobility on Substrate Surface Chemistry in high Performance Polythiophene Semiconductor Films, Appl. Phys. Lett. 90 (2007), 062117.10.1063/1.2472533Search in Google Scholar

MCCULLOCH, I.—HEENEY, M.—BAILEY, C.—GENIVICIUS, K.—MACDONALD, I.—SHKUNOV, M.—SPARROWE, D.—TIERNEY, S.—WAGNER, R.—ZHANG, W. M.—CHARBYNIC, M. L.—KLINE, R. J.—MCGEHEE, M. D.—TONEY, M. F.: Liquid-Crystalline Semiconducting Polymers with High Charge-Carrier Mobility, Nat. Mater. 5 (2006), 328-333.10.1038/nmat161216547518Search in Google Scholar

DICKEY, K. C.—ANTHONY, J. E.—LOO, Y.-L.: Improving Organic Thin-Film Transistor Performance through Solvent-Vapor Annealing of Solution-Processable Triethylsilylethynyl Anthradithiophene, Adv. Mater. 18 (2006), 1721-1726.10.1002/adma.200600188Search in Google Scholar

TSAO, H. N.—CHO, D.—ANDREASEN, J. W.—ROUHANIPOUR, A.—BREIBY, D. W.—PISULA, W.—MÜLLEN, K.: The Influence of Morphology on High-Performance Polymer Field-Effect Transistors, Adv. Mater. 21 (2009), 209-212.10.1002/adma.200802032Search in Google Scholar

ZEN, A.—PFLAUM, J.—HIRSCHMANN, S.—ZHUANG, W.—JAISER, F.—ASAWAPIROM, U.—RABE, J. P.—SCHERF, U.—NEHER, D.: Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic Field-Effect Transistors, Adv. Func. Mater. 14 (2004), 757-764.10.1002/adfm.200400017Search in Google Scholar

ISSN:
1335-3632
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other