Open Access

Catabolism of hyaluronan: Involvement of transition metals


Cite

Buettner GR, Jurkiewicz BA. (1993). The ascorbate free radical as a marker of oxidative stress: An EPR study. Free Radic Biol Med 14: 49-55.Search in Google Scholar

Delmage JM, Powars DR, Jaynes PK, Allerton SE. (1986). The selective suppression of immunogenicity by hyaluronic acid. Annals of Clinical and Laboratory Science 16: 303-310.Search in Google Scholar

Feinberg RN, Beebe DC. (1983). Hyaluronate in vasculogenesis. Science 220: 1177-1179.Search in Google Scholar

Fisher AEO, Naughton DP. (2003). Vitamin C contributes to inflammation via radical generating mechanisms: a cautionary note. Medical Hypotheses 61: 657-660.Search in Google Scholar

Fisher AEO, Naughton DP. (2004). Iron supplements: the quick fix with longterm consequences. Nutrition Journal 3: 1-5.Search in Google Scholar

Fisher AEO, Naughton DP. (2005). Therapeutic chelators for the twenty first Century: new treatments for iron and copper mediated inflammatory and neurological disorders. Current Drug Delivery 2: 261-268.Search in Google Scholar

Flemmig J, Arnhold J. (2007). Ferrous ion-induced strand breaks in the DNA plasmid pBR322 are not mediated by hydrogen peroxide. Eur Biophys J 36: 377-384.Search in Google Scholar

Gaetke LM, Chow CK. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189: 147-163.Search in Google Scholar

Grootveld M, Henderson EB, Farrell A, Blake DR, Parkes HG, Haycock P. (1991). Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal low-molecular-mass metabolites by proton-n.m.r. spectroscopy. Biochem J 273: 459-467.Search in Google Scholar

Halliwell B, Gutteridge JMC. (1990). Role of free radicals and catalytic metal ions in human disease: An overview. Methods Enzymol 186: 1-85.Search in Google Scholar

HaMai D, Bondy SC, Becaria A, Campbell A. (2001). The chemistry of transition metals in relation to their potential role in neurodegenerative processes. Curr. Topics Med. Chem. 1: 541-551.Search in Google Scholar

Hardingham T. (2004). Solution Properties of Hyaluronan, in Chemistry and Biology of Hyaluronan (Garg HG and Hales CA eds) pp. 1-19, Elsevier Press, Amsterdam.Search in Google Scholar

Hawkins CL, Davies MJ. (1996). Direct detection and identification of radicals generated during the hydroxyl radical-induced degradation of hyaluronic acid and related materials. Free Radicals in Biology and Medicine 21(3): 275-290.Search in Google Scholar

Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K. (1999). Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274: 25085-25092.Search in Google Scholar

Jiang D, Liang J, Noble PW. (2007). Hyaluronan in Tissue Injury and Repair. Annual Review of Cell and Developmental Biology 23: 435-461.Search in Google Scholar

Khan MMT, Martell AE. (1967). Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J. Am. Chem. Soc. 89: 4176-4185.Search in Google Scholar

Kogan G, Šoltés L, Stern R, Mendichi R. (2007). Chapter 31: Hyaluronic Acid: A Biopolymer with Versatile Physico-Chemical and Biological Properties, in Handbook of Polymer Research: Monomers, Oligomers, Polymers and Composites (Pethrick RA, Ballada A, Zaikov GE eds), pp. 393-439, Nova Science Publishers, New York.Search in Google Scholar

Kogan G, Šoltés L, Stern R, Schiller J, Mendichi R. (2008). Hyaluronic Acid: Its Function and Degradation in In Vivo Systems, in Studies in Natural Products Chemistry (Vol. 34 Bioactive Natural Products, Part D) (Atta-ur-Rahman ed) pp. 789-882, Elsevier, Amsterdam.Search in Google Scholar

Koppenol WH. (1994). Chemistry of Iron and Copper in Radical Reactions in Free Radical Damage and Its Control (Rice-Evans CA and Burdon RH eds) pp. 3-24, Elsevier Science B.V., Amsterdam.Search in Google Scholar

Magnani A, Silvestri V, Barbucci R. (1999). Hyaluronic acid and sulphated hyaruronic acid in aqueous solution: effect of the sulphation in the polyelectrolyte behaviour and complex formation with Cu2+ and Zn2+ ions. Macromolecular Chemistry and Physics 200: 2003-2014.Search in Google Scholar

McBride WH, Bard JB. (1979). Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis. Journal of Experimental Medicine 149: 507-515.Search in Google Scholar

Myint P, Deeble DH, Beaumont PC, Blake SM, Phyllips GO. (1987). The reactivity of various free radicals with hyaluronic acid: steady-state and pulse radiolysis studies, Biochim Biophys Acta 925: 194-202.10.1016/0304-4165(87)90109-7Search in Google Scholar

Niedermeier W, Griggs JH. (1971). Trace metal composition of synovial fluid and blood serum of patients with rheumatoid arthritis. J Chronic Dis 23: 527-536.Search in Google Scholar

Noble PW. (2002). Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biology 21: 25-29.Search in Google Scholar

Pirc ET, Arčcon I, Kodre A, Bukovec P. (2004). Metal-ion environment in solid Mn(II), Co(II) and Ni(II) hyaluronates. Carbohydrate Research 339: 2549-2554.Search in Google Scholar

Presti D, Scott JE. (1994). Hyaluronan-mediated protective effect against cell damage caused by enzymatically produced hydroxyl (OH·) radicals is dependent on hyaluronan molecular mass. Cell Biochemistry and Function 12: 281-288.Search in Google Scholar

Qian SY., Buettner GR. (1999). Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: An electron paramagnetic resonance spin trapping study. Free Radicals in Biology and Medicine 26: 1447-1456.Search in Google Scholar

Roth JA. (2006). Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biological Research 39: 45-57.Search in Google Scholar

Rychlý J, Šoltés L, Stankovská M, Janigová I, Csomorová K, Sasinková V, Kogan G, Gemeiner P. (2006). Unexplored capabilities of chemiluminescence and thermoanalytical methods in characterization of intact and degraded hyaluronans. Polym Degrad Stabil 91: 3174-3184.Search in Google Scholar

Shukla N, Maher J, Masters J, Angelini GD, Jeremy JY. (2006). Does oxidative stress change ceruloplasmin from a protective to a vasculopathic risk factor? Atherosclerosis 187: 238-250.10.1016/j.atherosclerosis.2005.11.03516412446Search in Google Scholar

Šoltés L, Kogan G, Stankovská M, Mendichi R, Rýchly J, Schiller J, Gemeiner P. (2007). Degradation of high-molecular-mass hyaluronan and characterization of fragments. Biomacromolecules 8: 2697-2705.Search in Google Scholar

Šoltés L, Mendichi R, Kogan G, Schiller J, Stankovská M, Arnhold J. (2006). Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 7: 659-668.Search in Google Scholar

Šoltés L, Stankovská M, Brezová V, Schiller J, Arnhold J, Kogan G, Gemeiner P. (2006). Degradation of high-molecular-weight hyaluronan by hydrogen peroxide in the presence of cupric ions. Carbohydrate Research 341: 2826-2834.Search in Google Scholar

Šoltés L, Valachová K, Mendichi R, Kogan G, Arnhold J, Gemeiner P. (2007). Solution properties of high-molar-mass hyaluronans: the biopolymer degradation by ascorbate. Carbohydrate Research 342: 1071-1077.Search in Google Scholar

Stern R, Asari AA, Sugahara KN. (2006), Hyaluronan fragments: an information-rich system. Eur J Cell Biol 85(8): 699-715.10.1016/j.ejcb.2006.05.00916822580Search in Google Scholar

Stern R, Kogan G, Jedrzejas MJ, Šoltés L. (2007). The many ways to cleave hyaluronan. Biotechnol Adv 25: 537-557.Search in Google Scholar

Szilagyi RK, Bryngelson PA, Maroney MJ, Hedman B, Hodgson KO, Solomon EI. (2004). S K-edge C-ray absorption spectroscopic investigation of the Ni-containing superoxide dismutase active site. J Am Chem Soc 126: 3018-3019.Search in Google Scholar

Thornalley PJ. (2003). Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochemical Society Transactions 31: 1343-1348.Search in Google Scholar

Udenfriend S, Clark CT, Axelrod J, Brodie BB. (1954). Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. Journal of Biological Chemistry 208: 731-739.Search in Google Scholar

Valachova K, Kogan G, Gemeiner P, Soltes L. (2009). Hyaluronan degradation by ascorbate: Protective effects of manganese(II) chloride, in Kinetics & Thermodynamics for Chemistry & Biochemistry: Vol. 2 (Pearce EM, Zaikov GE, Kirshenbaum G eds), pp. 201-215, Nova Science Publishers, New York.Search in Google Scholar

Valko M, Morris H, Cronin MTD. (2005). Metals, Toxicity and Oxidative Stress. 12: 1161-1208.Search in Google Scholar

Weigel PH, DeAngelis PL. (2007). Hyaluronan Synthases: A Decade-plus of Novel Glycosyltransferases J Biol Chem 282: 36777-36781.10.1074/jbc.R70003620017981795Search in Google Scholar

Weissberger A, LuValle JE, Thomas DS Jr. (1943). Oxidation processes. XVI. The autooxidation of ascorbic acid. Journal of American Chemical Society 65: 1934-1939.Search in Google Scholar

West DC, Hampson IN, Arnold F, Kumar S. (1985). Angiogenesis induced by degradation products of hyaluronic acid. Science 228: 1324-1326.Search in Google Scholar

Wong SF, Halliwell B, Richmond R, Skowroneck WR. (1981). The role of superoxide and hydroxyl radicals in the degradation of hyaluronic acid induced by metal ions and by ascorbic acid. J Inorg Biochem 14: 127-134.Search in Google Scholar

eISSN:
1337-9569
ISSN:
1337-6853
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Pharmacology, Toxicology