Open Access

Analysis of benzo[a]pyrene metabolites formed by rat hepatic microsomes using high pressure liquid chromatography: optimization of the method


Cite

Angerer J, Mannschreck C, Gündel J. (1997). Biological monitoring and biochemical effect monitoring of exposure to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 70: 365-377.Search in Google Scholar

Arlt VM, Stiborová M, Henderson CJ, Thiemann M, Frei E, Aimová D, Singhs R, da Costa GG, Schmitz OJ, Farmer PB, Wolf CR, Phillips DH. (2008). Metabolic activation of benzo[a]pyrene in vitro by hepatic cytochrome P450 contrasts with detoxification in vivo: experim ents with hepatic cytochrome P450 reductase null mice. Carcinogenesis 29: 656-665.Search in Google Scholar

Baird WM, Hooven LA, Mahadevan B. (2005). Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45: 106-114.Search in Google Scholar

Ellard S, Mohammed Y, Dogra S, Wolfel C, Doehmer J, Parry JM. (1991). Use of genetically engineered V79 Chinese hamster cultures expressing rat liver CYP1A1, 1A2 and 2B1 cDNAs in micronucleus assays. Mutagenesis 6: 461-47010.1093/mutage/6.6.4611800893Search in Google Scholar

Gündel J, Angerer J. (2000). High-performance liquid chromatographic method with fluorescence detection for the determination of 3-hydroxybenzo[a]pyrene and 3-hydroxybenz[a]anthracene in the urine of polycyclic aromatic hydrocarbon-exposed workers. J Chromatogr B Biomed Sci Appl 738: 47-55.Search in Google Scholar

Hecht SS. (2001). Carcinogen biomarkers for lung or oral cancer chemoprevention trials. IARC Sci Publ 154: 245-255.Search in Google Scholar

IARC Monogr Eval Carcinog Risk Chem Hum. (1983). Polynuclear Aromatic Compounds 32, 211.Search in Google Scholar

James MO, Altman AH, Li CL, Schell JD Jr. (1995). Biotransformation, hepatopancreas DNA binding and pharmacokinetics of benzo[a]pyrene after oral and parenteral administration to the American lobster, Homarus americanus. Chem Biol Interact 95: 141-160.Search in Google Scholar

James MO, Altman AH, Morris K, Kleinow KM, Tong Z. (1997). Dietary modulation of phase 1 and phase 2 activities with benzo(a)pyrene and related compounds in the intestine but not the liver of the channel catfish, Ictalurus punctatus. Drug Metab Dispos 25: 346-354.Search in Google Scholar

Jiang H, Gelhaus SL, Mangal D, Harvey RG, Blair IA, Penning TM. (2007). Metabolism of benzo[a]pyrene in human bronchoalveolar H358 cells using liquid chromatography-mass spectrometry. Chem Res Toxicol 20: 1331-1341.Search in Google Scholar

Kim JH, Stansbury KH, Walker NJ, Trush MA, Strickland PT, Sutter TR. (1998). Metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-diol by human cytochrome P450 1B1. Carcinogenesis 19: 1847-1853.Search in Google Scholar

Krahn MM, Myers MS, Burrows DG, Malins DC. (1984). Determination of metabolites of xenobiotics in the bile of fish from polluted waterways. Xenobiotica 14: 633-646.Search in Google Scholar

Lubet RA, Connolly G, Kouri RE, Nebert DW, Bigelow SW. (1983). Biological effects of Sudan I dyes. Role of the cytosolic Ah receptor. Biochem Pharmacol 32: 3053-3058.Search in Google Scholar

Luch A, Baird WM. (2005). Metabolic activation and detoxification of polycyclic aromatic hydrocarbons. The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. Imperial College Press, London, 19-96.10.1142/9781860949333_0002Search in Google Scholar

Martínek V, Stiborová M. (2002). Metabolism of carcinogenic azo dye Sudan I by rat, rabbit, minipig and human hepatic microsomes. Collect Czech Chem Commun 67: 1883-1898.Search in Google Scholar

Nebert DW. (1989). The Ah locus: genetic differences in toxicity, cancer, mutation and birth defects. Crit Rev Toxicol 20: 153-174.Search in Google Scholar

Omura T, Sato R. (1964). The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J Biol Chem 239: 2379-85Search in Google Scholar

Phillips DH. (1999). Polycyclic aromatic hydrocarbons in the diet. Mutat Res 443: 139-47.Search in Google Scholar

Phillips DH. (2002). Smoking-related DNA and protein adducts in human tissues Carcinogenesis 23: 1979-200410.1093/carcin/23.12.197912507921Search in Google Scholar

Phillips DH. (2005). Macromolecular adducts as biomarkers of human exposure to polycyclic aromatic hydrocarbons. The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons. Imperial College Press, London, 137-169.Search in Google Scholar

Sagredo C, Øvrebo S, Haugen A, Fujii-Kuriyama Y, Baera R, Botnen IV, Mollerup S. (2006). Quantitative analysis of benzo[a]pyrene biotransformation and adduct formation in Ahr knockout mice. Toxicol Lett 167: 173-182.Search in Google Scholar

Sasaki H, Yonekubo J, Kanai M, Toriba A, Kizu R, Hayakawa K. (2002). Simultaneous detection of monohydroxybenzo[a]pyrene positional isomers by reversed-phase liquid chromatography coupled to electrospray ionization mass spectrometry. Biomed Chromatogr 16: 432-436.Search in Google Scholar

Selkirk JK, Croy RG, Gelboin HV. (1974). Benzo[a]pyrene metabolites: efficient and rapid separation by high-pressure liquid chromatography. Science 184: 169-171.Search in Google Scholar

Selkirk JK. (1977). Benzo[a]pyrene carcinogenesis: a biochemical selection mechanism. J Toxicol Environ Health 2: 1245-1258.Search in Google Scholar

Stiborová M, Martínek V, Rýdlová H, Hodek P, Frei E. (2002). Sudan I is a potential carcinogen for humans: Evidence for its metabolic activation and detoxication by human recombinant cytochrome P450 1A1 and liver microsomes. Cancer Res 62: 5678-5684.Search in Google Scholar

Stiborová M, Stiborová-Rupertová M, Bořek-Dohalská L, Wiessler M, Frei E. (2003). Rat microsomes activating the anticancer drug ellipticine to species covalently binding to deoxyguanosine in DNA are a suitable model mimicking ellipticine bioactivation in humans. Chem Res Toxicol 16: 38-47.Search in Google Scholar

Toriba A, Nakamura H, Chetiyanukornkul T, Kizu R, Makino T, Nakazawa H, Yokoi T, Hayakawa K. (2003). Method for determining monohydroxybenzo[a]pyrene isomers using column-switching high-performance liquid chromatography. Anal Biochem 312: 14-22.Search in Google Scholar

Uno S, Dalton TP, Derkenne S, Curran CP, Miller ML, Shertzer HG, Nebert DW. (2004). Oral exposure to benzo [a] pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol Pharmacol 65: 1225-37.Search in Google Scholar

Uno S, Dalton TP, Dragin N, Curran CP, Derkenne S, Miller ML, Shertzer HG, Gonzalez FJ, Nebert DW. (2006). Oral benzo[a]pyrene in Cyp1 knockout mouse lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol Pharmacol 69: 1103-14.Search in Google Scholar

van Schanke A, Holtz F, van der Meer JP, Boon JP, Ariese F, Stroomberg G, van den Berg M, Everaarts JM. (2001). Dose- and time-dependent formation of biliary benzo[a]pyrene metabolites in the marine flatfish dab (Limanda limanda). Environ Toxicol Chem 20: 1641-1647.Search in Google Scholar

Wang JJ, Frazer DG, Law B, Lewis DM. (2003). Identification and quantification of urinary benzo[a]pyrene and its metabolites from asphalt fume exposed mice by microflow LC coupled to hybrid quadrupole time-of-flight mass spectrometry. Analyst 128: 864-870.Search in Google Scholar

Wiechelman KJ, Braun RD, Fitzpatrick JD. (1988). Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Anal Biochem 175: 231-237.Search in Google Scholar

Zhu S, Li L, Thornton C, Carvalho P, Avery BA, Willett KL. (2008). Simultaneous determination of benzo[a]pyrene and eight of its metabolites in Fundulus heteroclitus bile using ultra-performance liquid chromatography with mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 863: 141-149.Search in Google Scholar

eISSN:
1337-9569
ISSN:
1337-6853
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Pharmacology, Toxicology