Open Access

Linkage Between In-Stream Total Phosphorus and Land Cover in Chugoku District, Japan: An Ann Approach

AHEARN D. S., SHEIBLEY R. S., DAHLGREN R. A., ANDERSON M., JONSON J., TATE K. W., 2005: Land use and land cover influence on water quality in the last freeflowing river draining the western Sierra Nevada, California. J. Hydrol., 313, 234-247.10.1016/j.jhydrol.2005.02.038Search in Google Scholar

ALLAN J. D., ERICKSON D. L., FAY J., 1997: The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biol., 37, 149-161.10.1046/j.1365-2427.1997.d01-546.xSearch in Google Scholar

AMIRI B. J., 2007: Modelling the Relationship between Environmental Factors of the Catchments and River Water Quality in Chugoku District of Japan, PhD thesis, Hiroshima University, pp. 102.Search in Google Scholar

BARUAH P. J., TUMURA M., OKI K., NISHIMURA H., 2001: Neural network modelling of lake surface chlorophyll and sediment content from Landsat TM imagery, Proc. of the 22nd Asian Conference on Remote Sensing, 5-9, November, Singapore.Search in Google Scholar

BEVEN K., BINLEY A., 1992: The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Processes, 6, 279-298.10.1002/hyp.3360060305Search in Google Scholar

CAMPOLO M., ANDREUSSI P., SOLDATI A., 1999: River flood forecasting with neural network model. Water Resour. Res., 35, 4, 1191-1197.10.1029/1998WR900086Search in Google Scholar

CHRISTIAENS K., FEYEN J., 2002: Use of sensitivity and uncertainty measures in distributed hydrological modelling with an application to the MIKE SHE model. Water Resour. Res, 38, 9, 1169, doi:10.1029/2001WR000478.10.1029/2001WR000478Search in Google Scholar

DEAN S., FREER J., BEVEN K., WADE A. J., BUTTERFIELD D., 2009: Uncertainty assessment of a process based integrated catchment model of phosphorous. Stochastic Environ. Res. and Risk Assess., 23, 991-1010.10.1007/s00477-008-0273-zSearch in Google Scholar

EBERHART R. C., DOBBINS R. W., 1990: Neural Network PC Tools: A Practical Guide, Academic Press, New York.Search in Google Scholar

GATTS C. E. N., OVALLE A. R. C., SILVA C. F., 2005: Neural pattern recognition and multivariate data: water topology of the Paraiba do Sul River, Brazil. Environ. Modell. and Software, 20, 883-889. doi: 101016/j.envsoft.2004.03.018.10.1016/j.envsoft.2004.03.018Search in Google Scholar

GROSS L., THIRIA S., FROUIN R., 1999: Applying artificial neural network methodology to ocean colour remote sensing. Ecol. Modell., 120, 237-246.10.1016/S0304-3800(99)00105-2Search in Google Scholar

HAAN C. T., 2002: Statistical method in hydrology. Iowa State Press, Ames, Iowa.Search in Google Scholar

HAN D., KWONG T., LI S.: Uncertainties in real-time flood forecasting with neural networks. Hydrol. Processes, Published online in Wiley InterScience, doi: 10.1002/hyp.6184. (In press.)10.1002/hyp.6184Search in Google Scholar

HEM J. D., 1985: Study and interpretation of the chemical characteristics of natural water. USGS Supply Paper 2254, Washington DC.Search in Google Scholar

HILL A. R., 1998: Stream phosphorus exports from watersheds with contrasting land uses in southern Ontario. Water Resour. Bul., 17, 627-634.10.1111/j.1752-1688.1981.tb01269.xSearch in Google Scholar

HSIEH C., 1993: Some potential applications of artificial neural networks in financial management. J. of Sys. Manage., 44, 4, 12-15.Search in Google Scholar

JOHNSON L. B., RICHARDS C., HOST G. E., ARTHUR J. W., 1997: Landscape influences on water chemistry in Midwestern stream ecosystems. Freshwater Biol., 37, 193-208.10.1046/j.1365-2427.1997.d01-539.xSearch in Google Scholar

KEINER L. E., YAN X. H., 1998: A neural network model for estimating sea surface chlorophyll and sediments from Thematic mapper imagery. Remote Sensing of Environ., 66, 153-165.10.1016/S0034-4257(98)00054-6Search in Google Scholar

KHAN M. S., COULIBALY P., 2006: Bayesian neural network for rainfall-runoff modeling. Water Resour. Res., 42, W07409, doi:10.1029/2005WR003971.10.1029/2005WR003971Search in Google Scholar

KIESEL J., SCHMALZ B., FOHRER N., 2009: SEPAL - A simple GIS-based tool to estimate sediment pathways in lowland catchment. Adv. Geosci., 21, 25-32.10.5194/adgeo-21-25-2009Search in Google Scholar

KINGSTON G. B., LAMBERT M. F., MAIER H. R., 2005: Bayesian training of artificial neural network used for water resources modelling. Water Resour. Res., 41, W12409, doi: 10.1029/2005WR004152.10.1029/2005WR004152Search in Google Scholar

KRUEGER T., FREER J., QUINTON J. N., MACLEOD C. J. A., 2007: Processes affecting transfer of sediment and colloids, with associated phosphorus, from intensively farmed grasslands: a critical note on modelling of phosphorus transfers. Hydrol. Process, 21, 4, 557-562.10.1002/hyp.6596Search in Google Scholar

LAM Q. D., SCHMALZ B., FOHRER N., 2009: Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany. Adv. Geosci., 21, 49-55.10.5194/adgeo-21-49-2009Search in Google Scholar

LAM Q. D., SCHMALZ B., FOHRER N., 2010: Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agric. Water Manage., 97, 317-325.10.1016/j.agwat.2009.10.004Search in Google Scholar

LENHART T., VAN ROMPAEY A., STEEGEN A., FOHRER N., FREDE H.-G., GOVERS G., 2005: Considering spatial distribution and deposition of sediment in lumped and semidistributed models. Hydr. Proc., 19, 3, 785-794.10.1002/hyp.5616Search in Google Scholar

LI S., LIU W., GU S., CHENG X., XU Z., ZHANG Q., 2009: Spatio-Temporal Dynamics of Nutrients in the Upper Han River Basin, China. J. of Hazardous Mater., 162, 2-3, 1340-1346, doi: 10.1016/j.jhazmat.2008.06.059.10.1016/j.jhazmat.2008.06.05918675508Search in Google Scholar

LI S., XU Z., CHENG X., ZHANG Q., 2008: Dissolved trace elements and heavy metals in the Danjiangkou Reservoir, China. Environ. Geol. doi:10.1007/s00254-007-1047-5.10.1007/s00254-007-1047-5Search in Google Scholar

LIU S. M., BRAZIER R., HEATHWAITE L., 2005: An investigation into the inputs controlling predictions froth a diffuse phosphorus loss model for the UK; the Phosphorus Indicators Tool (PIT). Sci. Total Environ, 344, 1-3, 211-223.10.1016/j.scitotenv.2005.02.017Search in Google Scholar

MAIER H. R., DANDY, G. C., 2000: Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Modell. and Software, 15, 101-124.10.1016/S1364-8152(99)00007-9Search in Google Scholar

MAIER H. R., JAIN A., DANDY G. C., SUDHEER K. P., 2010: Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environ. Modell. and Software, 25, 8, 891-909, 2010 10.1016/j.envsoft.2010.02.003.10.1016/j.envsoft.2010.02.003Search in Google Scholar

NEITSCH S. L., ARNOLD J. G., KINIRY J. R., WILLIAMS J. R., KING K. W., 2002: Soil Water Assessment Tool theoretical documentation. Version 2000. Texas Water Resource Institute, college station, Texas. TWRI Report, TR-191.Search in Google Scholar

PAGE T., HAYGARTH P. M., BEVEN K. J., JOYNES A., BUTLER T., KEELER C., FREER J., OWENS P. N., WOOD G. A., 2005: Spatial variability of soil phosphorus in relation to the topographic index and critical source areas: sampling for assessing risk to water quality. J. Environ Q., 34, 6, 2263-2277.10.2134/jeq2004.039816275728Search in Google Scholar

PANDA S. S., GARG V., CHAUBEY I., 2004: Artificial neural network application in lake water quality estimation using satellite imagery. J. Environ. Informatics, 4, 2, 65-74.10.3808/jei.200400038Search in Google Scholar

RADWAN M., WILLEMS P., BERLAMONT J., 2004: Sensitivity and uncertainty analysis for river quality modelling. J. Hydroinformatics, 6, 83-99.10.2166/hydro.2004.0008Search in Google Scholar

RECH G., 2002: Forecasting with Artificial Neural Network Models, SSE/EFI Working Paper Series in Economics and Finance, No. 491, 38 pp.Search in Google Scholar

RODE M., SUHR U., WRIEDT G., 2007: Multi-objective calibration of a river water quality model - information content of calibration data. Ecol. Model., 204, 1-2, 129-142.10.1016/j.ecolmodel.2006.12.037Search in Google Scholar

RUMELHART D. E., HINTON G. E., WILLIAMS R. J., 1986: Learning representations by back propagating errors. Nature, 323, 533-536.10.1038/323533a0Search in Google Scholar

SCHMALZ B., BIEGER K., FOHRER N., 2008: A method to assess instream water quality - the role of nitrogen entries in a North German lowland catchment. Adv. Geosci., 18, 37-14.10.5194/adgeo-18-37-2008Search in Google Scholar

SCHMALZ B., TAVARES F., FOHRER N., 2007: Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments. Adv. Geosci., 11, 107-112.10.5194/adgeo-11-107-2007Search in Google Scholar

SCHILLER H., DOERFFER, R., 1999: Neural network emulation of an inverse model-operational derivation of case II water properties from MERIS data. Int'l. J. of Remote Sensing, 20, 9, 1735-1746.10.1080/014311699212443Search in Google Scholar

SCHMIDT D. F., MAKALIC, E., 2009: Universal Models for the Exponential Distribution. IEEE Transactions on Information Theory, 55, 7, 3087-3090, doi:10.1109/TIT.2009.2018331.10.1109/TIT.2009.2018331Search in Google Scholar

SINGH A. P., GHOSH S. K., SHARMA P., 2007: Water quality management of a stretch of river Yamuna: an interactive fuzzy multi-objective approach. Water. Resour. Manage., 21, 2, 515-532.10.1007/s11269-006-9028-0Search in Google Scholar

SLIVA L., WILLIAMS D. D., 2001: Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res., 35, 14, 3462-3472.10.1016/S0043-1354(01)00062-8Search in Google Scholar

SMART R. P., SOULSBY C., NEAL C., WADE A., CRESSER M. S., BILLETT M. F., LANGAN S. J., EDWARDS A. C., JARVIE H. P., OWEN R., 1998: Factors regulating the spatial and temporal distribution of solute concentrations in a major river system in NE Scotland. Sci. Total Environ., 221, 93-110.10.1016/S0048-9697(98)00196-XSearch in Google Scholar

SRIVASTAV R. K., SUDHEER K. P., CHAUBEY, I., 2007: A Simplified Approach to Quantify Predictive and Parametric Uncertainty in Artificial Neural Network Hydrologic Models. Water Resour. Res., 43, 10, Art. No. W10407.10.1029/2006WR005352Search in Google Scholar

SUDHEER K. P., CHAUBEY I., GARG, V., 2006: Lake Water Quality Assessment from Landsat TM Data using Neural Network: An approach to optimal band combination selection. J. of Am. Water Resour. Soc., 42, 6, 1683-1695.10.1111/j.1752-1688.2006.tb06029.xSearch in Google Scholar

TANAKA A., KISHINO M., OISHI T., DOERFFER R., SCILLER H., 2000: Application of the neural network method to case II water. In: SPIE Proceedings, Remote Sensing of Ocean and Sea Ice 2000, Barcelona, 4172, 144-152.Search in Google Scholar

THIRUMALAIAH K., DEO M. C., 2000: Hydrological forecasting using neural networks. J. Hydrol. Eng., ASCE, 5, 2, 180-189.10.1061/(ASCE)1084-0699(2000)5:2(180)Search in Google Scholar

TURNER R. E., RABALAIS N. N., 2003: Linking landscape and water quality in the Mississippi River Basin for 200 years. Bioscience, 53, 563-572.10.1641/0006-3568(2003)053[0563:LLAWQI]2.0.CO;2Search in Google Scholar

VAN GRIENSVEN A., MEIXNER T., 2006: Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Sci. Technol., 53, 1, 51-59.10.2166/wst.2006.00716532735Search in Google Scholar

WHITE H., 1989: Learning in artificial neural networks: a statistical perspective. Neural Computation, 1, 425-464.10.1162/neco.1989.1.4.425Search in Google Scholar

ISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other