Open Access

A calibration-free evapotranspiration mapping technique for spatially-distributed regional-scale hydrologic modeling

ALLEN R.G., TASUMI M., TREZZA R., 2007: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model. J. Irrig. Drainage Engng., 133, 4, 380-394.10.1061/(ASCE)0733-9437(2007)133:4(380)Search in Google Scholar

BALDOCCHI D.D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol., 9, 1-14.10.1046/j.1365-2486.2003.00629.xSearch in Google Scholar

BARCZA Z., KERN A., HASZPRA L., KLJUN N., 2009: Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis. Agric. Forest Meteor., 149, 795-807.10.1016/j.agrformet.2008.10.021Search in Google Scholar

BASTIAANSSEN W.G.M., MENENTI M., FEDDES R.A., HOLTSLAG A.A.M., 1998: A remote sensing surface energy balance algorithm for land (SEBAL): 1. Formulation. J. Hydrol., 212, 198-212.10.1016/S0022-1694(98)00253-4Search in Google Scholar

BOUCHET R.J., 1963: Evapotranspiration reelle, evapotranspiration potentielle, et production agricole. Annal. Agronom., 14, 543-824.Search in Google Scholar

BRUTSAERT W., PARLANGE M.B., 1998: Hydrologic cycle explains the evaporation paradox. Nature, 396, (6706), 30.10.1038/23845Search in Google Scholar

BRUTSAERT W., STRICKER H., 1979: An Advection-Aridity approach to estimate actual regional evapotranspiration. Water Resour. Res., 15, 443-449.10.1029/WR015i002p00443Search in Google Scholar

GUSEV Y., NOVÁK V., 2007: Soil water - main water resources for terrestrial ecosystems of the biosphere. J. Hydrol. Hydromech., 55, 1, 3-15.Search in Google Scholar

HLAVČOVÁ K., KALAŠ M., KOHNOVÁ S., SZOLGAY J., 2004.: Modelling potential evapotranspiration and runoff in monthly time step in the Hron River basin. (In Slovak.) (Modelovanie potenciálnej evapotranspirácie a odtoku v mesačnom kroku na povodí Hrona.) J. Hydrol. Hydromech., 52, 4, 255-266.Search in Google Scholar

HOBBINS M.T., RAMIREZ J.A., BROWN T.C., 2001a): The complementary relationship in estimation of regional evapotranspiration: An enhanced advection-aridity model. Water Resour. Res., 37, 5, 1389-1403.10.1029/2000WR900359Search in Google Scholar

HOBBINS M.T., RAMIREZ J.A., BROWN T.C., CLAESSENS L.H.J.M., 2001b): The complementary relationship in estimation of regional evapotranspiration: The complementary relationship areal evaporation and advection-aridity models. Water Resour. Res., 37, 5, 1367-1387.10.1029/2000WR900358Search in Google Scholar

KOVACS A., SZILAGYI J., 2009a): Estimating evaporation rates of shallow great lakes in Hungary, I. (In Hungarian.) Hidrol. Kozlony, 89, 2, 47-50.Search in Google Scholar

KOVACS A., SZILAGYI J., 2009b): Estimating evaporation rates of shallow great lakes in Hungary, II. (In Hungarian.) Hidrol. Kozlony, 89, 2, 51-56.Search in Google Scholar

MAJOR P., 1976: Groundwater balance investigations in flat lands. 2. Piezometer readings. (VITUKI report, in Hungarian), VITUKI, Budapest.Search in Google Scholar

MORTON F.I., 1983: Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J. Hydrol., 66, 1, 1-76.10.1016/0022-1694(83)90177-4Search in Google Scholar

MORTON F.I., RICARD F., FOGARASI S., 1985: Operational estimates of areal evapotranspiration and lake evaporation - Program WREVAP. National Hydrological Research Institute Paper #24, Ottawa, Ontario, Canada.Search in Google Scholar

NAGY Z., PINTER K., CZOBEL S., BALOGH J., HORVATH L., FOTI S., BARCZA Z., WEIDINGER T., CSINTALAN Z., DINH N.Q., GROSZ B., TUBA Z., 2007: The carbon budget of semi-arid grassland in a wet and a dry year in Hungary. Agric. Ecosyst. Environ. 121, 1-2, 21-29.10.1016/j.agee.2006.12.003Search in Google Scholar

NOVÁK V., 2001: Evapotranspiration from Crop Canopies and its Distribution over the Territory of Slovakia. Pollution and Water Resources, Columbia University Seminar Proceedings, Columbia University, 375-397.Search in Google Scholar

NOVÁK V., MATEJKA F., 2000: Vzťah medzi vlhkosťou, vlhkostným potenciálom pôdy a intenzitou evapotranspirácie: výsledky matematickeho modelovania. (In Slovak.) (Soil water content, soil water potential and evapotranspiration interrelations: results of mathematical modeling.) J. Hydrol. Hydromech., 48, 2, 125-141.Search in Google Scholar

PARAJKA J., SZOLGAY J., MÉSZÁROS I., KOSTKA Z., 2004: Grid-based mapping of the long-term mean annual potential and actual evapotranspiration in upper Hron River basin. J. Hydrol. Hydromech., 52, 4, 239-254.Search in Google Scholar

PENMAN H.L., 1948: Natural evaporation from open water, bare soil, and grass. Proc. Royal Soc. London, A193, 120-146.10.1098/rspa.1948.0037Search in Google Scholar

PINTER K., BARCZA Z., BALOGH J., CZOBEL S., CSINTALAN Z., TUBA Z., NAGY Z., 2008: Interannual variability of grasslands' carbon balance depends on soil type. Community Ecol., 9 (Suppl1), 43-48. doi: 10.1556/ComEc.9.2008.S.7.10.1556/ComEc.9.2008.S.7Search in Google Scholar

PRIESTLEY C.H.B., TAYLOR R.J., 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Month. Weather Rev., 100, 81-92.10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2Search in Google Scholar

STELCZER K., 2000: A vizkeszletgazdalkodas hidrologiai alapjai. (Hydological bases of water resources management. (In Hungarian.) ELTE Eotvos Kiado, Budapest, Hungary.Search in Google Scholar

SZILAGYI J., 1994: Water-balance modeling in a changing environment: reductions in unconfined aquifer levels in the area between the Danube and Tisza Rivers in Hungary. Master's Thesis, University of New Hampshire, Durham, New Hampshire, USA.Search in Google Scholar

SZILAGYI J., 2001: Modeled areal evaporation trends over the conterminous United States. J. Irrig. Drainage Engng., 127, 4, 196-200.10.1061/(ASCE)0733-9437(2001)127:4(196)Search in Google Scholar

SZILAGYI J., VOROSMARTY C.J., 1997: Water-balance modeling in a changing environment: reductions in unconfined aquifer levels in the area between the Danube and Tisza Rivers in Hungary. J. Hydrol. Hydromech., 45, 348-364.Search in Google Scholar

SZILAGYI J., JOZSA J., 2008: New findings about the complementary relationship based evaporation estimation methods. J. Hydrol., 354, 171-186.10.1016/j.jhydrol.2008.03.008Search in Google Scholar

SZILAGYI J., HOBBINS M., JOZSA J., 2009: A modified Advection-Aridity model of evapotranspiration. J. Hydrol. Engng., 14, 6, 569-574.10.1061/(ASCE)HE.1943-5584.0000026Search in Google Scholar

SZILAGYI J., JOZSA J., 2009a): Analytical solution of the coupled 2-D turbulent heat and vapor transport equations and the complementary relationship of evaporation. J. Hydrol., 372, 61-67.10.1016/j.jhydrol.2009.03.035Search in Google Scholar

SZILAGYI J., JOZSA J., 2009b: Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data. Hydrol. Earth System Sci., 13, 5, 629-637.10.5194/hess-13-629-2009Search in Google Scholar

SZILAGYI J., JOZSA J., 2009c): An evaporation estimation method based on the coupled 2-D turbulent heat and vapor transport equations. J. Geophys. Res., 114, D06101, doi:10.1029/2008JD010772.10.1029/2008JD010772Search in Google Scholar

ISSN:
0042-790X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other