Open Access

Experimental investigation on effective detection of delamination in gfrp composites using taguchi method


Cite

Ng S.C., Ismail N., Aidy Ali, Barkawi Sahari, Yusof J.M. and Chu B.W.: Non-destructive inspection of multi-layered composite using ultrasonic signal processing. IOP Conference Series: Material Science and Engineering (2011), 17 012045. 10.1088/1757-899X/17/1/012045Search in Google Scholar

Reifsnider K.: Damage in composite materials. ASTM STP775, American Society for Testing and Materials, Philadelphia, 1982. Search in Google Scholar

Ambu, R., Aymerich, F., Ginesu, F. and Priolo, P.: Assessment of NDT interferometric techniques for impact damage detection in composite laminates. Composites Science and Technology 66(2006), 199-205. Search in Google Scholar

Adams, R.D. and Cawley, P.: Defect types and non-destructive testing techniques for composites and bonded joints. Constructions and Building Materials 3(1989), 170-183. Search in Google Scholar

Brizuela, J., Fritsch, C., and Ibáñez, A.: Railway wheel-flat detection and measurement by ultrasound. Transportation Research Part C: Emerging Technologies 19(2011), 975-984. 10.1016/j.trc.2011.04.004Search in Google Scholar

Ohara Yoshikazu, Horinouchi Satoshi, Hashimoto Makoto, Shintaku Yohei, Yamanaka Kazushi.: Nonlinear ultrasonic imaging method for closed cracks using subtraction of responses at different external loads. Ultrasonics 51(2011), 661-666. Search in Google Scholar

Krishnan Balasubramaniam, Jitendra S. Valluri and Raghu V. Prakash.: Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Materials Characterization, 62(2011), 275-286. Search in Google Scholar

Zumpano, G., and Meo, M.: Damage localization using transient non-linear elastic wave spectroscopy on composite structures. International Journal of Non-Linear mechanics, 43(2007), 217-30. Search in Google Scholar

Meo, M., Polimeno, U. and Zumpano, G.: Detecting damage in composite material using nonlinear elastic wave spectroscopy methods. Applied Composite Materials 15(2008), 115-126. Search in Google Scholar

Wooh, S.C. and Wei, C.A.: High-fidelity ultrasonic pulse-echo scheme for detecting delaminations in composite laminates. Composites Part B: Engineering 30(1999), 433-441. Search in Google Scholar

Kilickap, E.: Optimization of cutting parameters on delamination based on Taguchi method during drilling of GFRP composite. Expert Systems with Applications 37(2010), 6116-6122. Search in Google Scholar

Davidson, M. Joseph, Balasubramanian, K. and Tagore, G.R.N.: Experimental investigation on flow-forming of AA6061 alloy – a Taguchi approach. Journal of Materials Processing Technology 200(2008), 283-287. Search in Google Scholar

Rosa, J.L., Robin, A. M.B. Silva, C.A. Baldan, M.P. Peres.: Electrodeposition of copper on titanium wires: Taguchi experimental design approach. Journal of Materials Processing Technology 209(2009), 1181-1188. Search in Google Scholar

Diamanti, K., Soutis, C. and Hodgkinson, J.M.: Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams. Composites Part A: Applied Science and Manufacturing 36(2005), 189–195. Search in Google Scholar

Irusta, R., Antolín, G., Velasco, E. and García, J.C.: The selection of testing methods for biofuels using the Taguchi signal-to-noise ratio. Biomass and Bioenergy 6(1994), 405-413. Search in Google Scholar

Bagci, E. and Ozcelik, B.: Analysis of temperature changes on the twist drill under different drilling conditions based on Taguchi method during dry drilling of Al 7075-T651. The International Journal of Advanced Manufacturing Technology 29(2006), 629-636.Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials