Open Access

NANOTECHNOLOGIES IN DEVELOPMENT OF STRUCTURAL MATERIALS AND BIOMATERIALS


Cite

The Encyclopedia of Nanoscience and Nanotechnology. H. S. Nalwa [ed.], USA, 2004.Search in Google Scholar

hhttp://www.uach.sav.sk/web/dokumenty/APVV/APVV_050505_ENG.pdfSearch in Google Scholar

http://www.mknano.com/?gclid=CLuJ4_qevo8CFQ6ZQwodTynEYASearch in Google Scholar

http://spore.cta.int/spore124/spore124_feature.aspSearch in Google Scholar

Yang H., Yang R., Wan X., Wan W.: Structure and photoluminescence of Ge nanoparticles with different sizes embedded in SiO2, glasses fabricated by a sol-gel method. J. Crystal Growth 261 (2004) 549-556.Search in Google Scholar

http://www.nims.go.jp/onc/index_e.htmlSearch in Google Scholar

http://www.sandia.gov/news/resources/releases/2004/micro-nano/nanotoolcase.html+Search in Google Scholar

Pande C. S., Masumura R. A.: Deformation and Coble creep of nanocrystalline materials. Mat. Res. Soc. Symp. Proc., Vol. 740, 2003, chpt. 11.1.10.1557/PROC-740-I1.1Search in Google Scholar

Varyukhin V. M., Tkatch V. I., Maslow V. V., Beygelzimer Y. Y., Synkov S. G., Nosenko V. K., Rassolov S. G., Synkov A. S., Krysov V. I., Mashira V. A.: Consolidation of amorphous Al86Ni6Co2Gd6 melt-spun ribbons by twist extrusion. Mater. Sci. Forum 503-504 (2006) 699-704.Search in Google Scholar

Stolyarov V. V., Zhu Y. T., Lowe T. C., Valiev R. Z.: Microstructures and properties of ultrafine-grained pure titanium processed by equal-channel angular pressing and cold deformation. J. Nanosci. Nanotechn. 1 (2001) 237-242.Search in Google Scholar

De Castro C. L., Mitchell B. S.: Synthesis, Functionalization and Surface Treatment of Nanoparticles. M. I. Baraton (ed.). Amer. Sci. Publ., 2002, pp. 11-15.Search in Google Scholar

http://www.plasmachem.com/contentenglish/nanopowders_technology.htmlSearch in Google Scholar

Chen H., Huang R. B., Tao Z. C., Zheng L.-S., Zhou G.-W., Zhang Z.: Single titanium crystals encapsulated in carbon nanocages obtained by laser vaporization of sponge titanium in benzene vapor. Appl. Phys. Lett. 77 (2000) 91-93.Search in Google Scholar

Zhu S., Su C.-H., Cochrane J. C., Lehoczky S., Muntele I., Ila D.: Growth of carbon nanostructure materials using laser vaporization. Diamond Related Mater. 10 (2001) 1190-1194.Search in Google Scholar

Roca i Cabarrocas Nguyen-Tran Th., Djeridane Y., Abramov A., Johnson E., Patriarche G.: Synthesis of silicon nanocrystals in silane plasmas for nanoelectronics and large area electronic devices. J. Phys. D: Appl. Phys. 490 (2007) 2258-2266.Search in Google Scholar

Kurisu H., Nagoya K., Yamada N., Yamamoto S., Matsuura M.: Characterization of CuCl nanocrystals in SiO2 matrix fabricated by inductively coupled plasma-assisted sputtering deposition. J. Vac. Sci. Techn. B 21 (2003) 2169-2173.Search in Google Scholar

Vilcarromero J., Bustamante R., da Silva J. H. D.: Hydrogen influence on gallium arsenide thin films prepared by RF magnetron sputtering technique. Brazilian J. Phys. 36 (2006) 1035-1037.Search in Google Scholar

Madhukar S., Smith K. et al.: CVD growth of Si nanocrystals on dielectric surfaces for nanocrystal floating gate memory application. http://www.mrs.org/s_mrs/sec_subscribe.asp?CID=2390&DID=136676&action=detailSearch in Google Scholar

Huang J., Xie Y., Li B., Liu Y., Lu J., Qian I.: Ultrasound-induced formation of CdS nanostructures in oil-in-water microemulsions. J. Colloid Interface Sci. 236 (2001) 382-384.Search in Google Scholar

Yu J., Chen Y., Wuhrer R., Liu Z., Ringer S. P.: In situ formation of BN nanotubes during nitriding reactions. Chem. Mater. 17 (2005) 5172-5176.Search in Google Scholar

Gao B., Bower C., Lorentzen J. D., Fleming L., Kleinhammes A., Tang X. P., McNeil L. E., Wu Y., Zhou O.: Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem. Phys. Lett. 327 (2000) 69-75.Search in Google Scholar

Chou S. Y., Keimel C., Gu J.: Ultrafast and direct imprint of nanostructures in silicon. Nature 417 (2002) 835-837.Search in Google Scholar

Staikov G., Milchev A.: The Impact of Electrocrystallization on Nanotechnology. Pages 1-29. Wiley 2007.10.1002/9783527610198.ch1Search in Google Scholar

Ross A., Hwang M., Shima M.: Micromagnetic behaviour of electrodeposited cylinder arrays. Phys. Rev. B 65 (2002) 14-17.Search in Google Scholar

Macak J. M., Albu S., Kim D. H., Paramasivam I., Aldabergerova S., Schmuki P.: Miltulayer TiO2-nanotube formation by two-step anodization. Electrochem. Solid-State Lett. 10 (2007) K28-K31.10.1149/1.2737544Search in Google Scholar

Gardelis S., Tsiaoussis I., Frangis N., Nassiopolou A. G.: Ultra-thin films with embedded Si nanocrystals fabricated by electrochemical dissolution of bulk crystalline Si in the transition regime between porosification and electropolishing. Nanotechnology 18 (2007) 115705. http://www.iop.org/EJ/abstract/0957-4484/18/11/115705. http://www.iop.org/EJ/abstract/0957-4484/18/11/115705Search in Google Scholar

Kartopu G., Ekinci Y.: Further evidence on the observation of compositional fluctuation in silicon-germanium alloy nanocrystals prepared in anodized porous silicon-germanium films. Thin Solid Films 473 (2005) 213-217.Search in Google Scholar

Kokonou M., Nassiopolou A. G., Giannakopolous K. P.: Arrays of SiO2 nanoislands grown electrochemically on silicon through nanoporous anodic alumina template. www.isnm2005.org/…/pdf&filename=paper%2053%20(Maria%20Kokonou).pdf-Search in Google Scholar

Petit C., Wang Z. L., Pileni M. P.: Ferromagnetic cobalt nanocrystals achieved by soft annealing approach - From individual behaviour mesoscopic organised properties. J. Magnet. Magnet. Mater. 312 (2007) 390-399.Search in Google Scholar

Kachurin G. A., Yanovskaya S. G., Ryuault M. O., Gutakovskii A. K., Zhuravlev K. S. Kaitasov O., Bernas H.: The influence of irradiation and subsequent annealing on Si nanocrystals formed in SiO2 layers. Semiconduct. 34 (2000) 965-970.Search in Google Scholar

http://www.panalytical.com/index.cfm?pid=866Search in Google Scholar

Vida-Simiti I., Jumate N., Chicinas I., Batin G.: Applications of scanning electron microscopy (SEM) in nanotechnology and nanoscience. Rom. J. Phys., 49, 9-10 (2004) 955-965.Search in Google Scholar

http://www.imec.be/wwwinter/mediacenter/en/SR2006/681619.htmlSearch in Google Scholar

http://www.ndhu.edu.tw/~nano/file/chem31300/NT06-L2-Mar07-Nanomaterials.pdfSearch in Google Scholar

http://www.ntrc.itri.org.tw/research/pdf-2004/08-3.pdfSearch in Google Scholar

Serbiński W., Zieliński A., Wierzchoń T.: Laser assisted forming of the surface layer of Al-Si alloy at cryogenic conditions. Inż. Mater. 25 (2004) 656-658.Search in Google Scholar

Eliaz N., Eliezer D., Olson D. L.: Hydrogen-assisted processing of materials. Mater. Sci. Eng. A289 (2000) 41-53.10.1016/S0921-5093(00)00906-0Search in Google Scholar

T. M. Yue, T. M. Cheung, H. C. Man, The effects of laser surface trea on the corrosion properties of Ti-6Al-4V alloy in Hank's solution. J. Mater. Sci. Lett. 19 (2000) 205-208.Search in Google Scholar

T. M. Yue, J. K. Yu, Z. i, H. C. Man, Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement. Mater. Lett. 52 (2002) 206-212.Search in Google Scholar

F. Guillemot, E. Prima et al., Ultraviolet laser surface treatment fore biomedical applications of β titanium alloys: morphological and structural characterization, Appl. Phys. A 77 (2003) 899-904.Search in Google Scholar

Kyryliv V., Bassarab A., Yaskiv O., Koval J., Voloshyn V., Influence of mechanical pulse treatment on the mechanical and corrosion characteristics of VT-5 alloy. Mater. Sci. 38, 2002, 750.10.1023/A:1024282928169Search in Google Scholar

Spanhel L.: Colloidal ZnO nanostructures and functional coatings: A survey. J. Sol-Gel Sci. Techn. 39 (2006) 7-24.Search in Google Scholar

http://www.physorg.com/news10609.htmlSearch in Google Scholar

http://www.medicaldevice-network.com/features/feature1061/Search in Google Scholar

Wood S., Jones R. Geldart A.: ESRC The Social and Economic Challenges of Nanotechnology report, July 2003. http://www.azonano.com/details.asp?ArticleID=1056Search in Google Scholar

Sirivisoot S., Yao C., Xiao X., Sheldon B. W., Webster T. J.: Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications. Nanotechnol. 18 (2007) 365102 (6pp). http://www.iop.org/EJ/abstract/0957-4484/18/36/365102 http://www.iop.org/EJ/abstract/0957-4484/18/36/365102Search in Google Scholar

http://www.physorg.com/news12131.htmlSearch in Google Scholar

Kumar S.: Nanomaterials for cancer therapy (Nanotechnologies for the life sciences, Vol. 7). Wiley, 2006.Search in Google Scholar

http://www.ifw-dresden.de/institutes/iff/research/Carbon/CNT/biomedSearch in Google Scholar

Medical and Pharmaceutical Applications for Nanomaterials and Nanoparticles - Supplier Data by Strem Chemicals. http://www.azonano.com/details.asp?ArticleID=1336Search in Google Scholar

New drug-delivey system using nanomaterials. Medic. Sci. News. http://www.newsmedical.net/?id=26189Search in Google Scholar

John G., Vemula P. K.: Design and development of soft nanomaterials from biobased amphiphiles. Soft Matter 2006 (2) 909-914.10.1039/b609422h32680178Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials