Cite

http://silver.neep.wisc.edu/~lakes/BME315N3.pdfSearch in Google Scholar

Zieliński A.: Nowoczesne biostopy tytanu i kierunki ich rozwoju. Materiały i Technologie (Materials and Technologies) 2 (2004) 242-247.Search in Google Scholar

Świeczko-Żurek B., Ziemlański A.: Allergies to implant metal compounds. Advances in Materials Science No. 3, 9 (2009) 39-46.Search in Google Scholar

Malluche H. H.: Aluminium and bone disease in chronic renal failure. Nephrology Dialysis Transplantation 17 (2002) 21-24.10.1093/ndt/17.suppl_2.21Search in Google Scholar

Domingo J. L.: Vanadium and diabetes. What about vanadium toxicity? Molecular and Cellular Biochemistry 203 (2000) 185-187.Search in Google Scholar

Sobieszczyk S.: Optimal features of porosity of Ti alloys considering their bioactivity and mechanical properties. Advances in Materials Science No. 2, 10 (2010) 20-30.Search in Google Scholar

Ryan G., Pandit A., Apatsidis D. P.: Fabrication methods of porous materials for use in orthopaedic applications. Biomaterials 27 (2006) 2651-2670.Search in Google Scholar

Okazaki Y., Gotoh E., Manabe T., Kobayashi K.: Comparison of metal concentrations in rat tibia tissues with various metallic implants. Biomaterials 28 (2004) 5913-6025.Search in Google Scholar

M. Koike and H. Fuji, The corrosion resistance of pure titanium in organic acids, Biomaterials 22 (2001) 2931-2936.10.1016/S0142-9612(01)00040-0Search in Google Scholar

M. A. Khan, R. L. Williams and D.F Williams, In-vitro corrosion and wear of titanium alloys in the biological environment. Biomaterials 17 (1996) 2117-2126.Search in Google Scholar

Y. Okazaki and E. Gotoh, Comparison of metal release from various metallic biomaterials in vitro, Biomaterials 26 (2005) 11-21.10.1016/j.biomaterials.2004.02.00515193877Search in Google Scholar

Landor I., Vavrik P., Sosna A., Jahoda D., Hahn H., Daniel M.: Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch. Orthop. Trauma Surg. 127 (2007) 81-89.Search in Google Scholar

Burstein G. T., Liu C., Souto R. M.: The effect of temperature on the nucleation of corrosion pits on titanium in Ringer's physiological solution. Biomaterials 26 (2005) 245-256.Search in Google Scholar

Browne M., Gregson P. J.: Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21 (2000) 385-392.Search in Google Scholar

Zieliński A., Sobieszczyk S.: Corrosion of titanium biomaterials, mechanisms, effects and modelisation. Corrosion Reviews 26 (2008) 1-22.Search in Google Scholar

Sobieszczyk S.: Self-organised nanotubular oxide layers on Ti and Ti alloys. Advances in Materials Science No. 2, 9 (2009) 25-41.Search in Google Scholar

Carama O. R., Pauli C. P., Giordano M. C.: Potentiodynamic behavior of mechanically polished titanium electrodes. Electrochim. Acta 29 (1984) 1111-1117.Search in Google Scholar

Felske A., Plieth W. J.: Raman spectroscopy of titanium dioxide layers. Electrochim. Acta 34 (1989) 75-77.Search in Google Scholar

Głuszek J., Masalski J., Furman P., Nitsch K.: Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials 18 (1997) 789-794.Search in Google Scholar

Nishiguchi S., Kato H., Fujita H., Oka M., Kim H.-M., Kokubo T., Nakamura T.: Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 22 (2001) 2525-2533.Search in Google Scholar

Wang X.-X., Hayakawa S., Tsuru K., Osaka A.: Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H2O2/HCl solution. Biomaterials 23 (2002) 1353-1357.Search in Google Scholar

Takeuchi M., Abe Y., Yoshida Y., Nakayama Y., Okazaki M., Akagawa Y.: Acid pretreatment of titanium implants. Biomaterials 24 (2003) 1821-2827.Search in Google Scholar

Sul Y.-T., Johansson C. B., Petronis S., Krozer A., Jeong Y., Wennerberg A., Albrektsson T.: Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configuration, surface roughness, crystal structure and chemical composition. Biomaterials 23 (2002) 491-501.Search in Google Scholar

Frauchiger V. M., Schlottig F., Gasser B., Textor M.: Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials 25 (2004) 593-606.Search in Google Scholar

MacDonald D. E., Rapuano B. E., Deo N., Strancik M., Somasundaran P., Boskey A. L.: Thermal and chemical modification of titanium-aluminum-vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials 25 (2004) 3135-314.Search in Google Scholar

Yang B., Uchida M., Kim H.-M., Zhang H., Kokubo T.: Preparation of bioactive titanium metal via anodic oxidation treat ment. Biomaterials 25 (2004) 1003-1010.Search in Google Scholar

Felske A., Plieth W. J.: Raman spectroscopy of titanium dioxide layers. Electrochim. Acta 34 (1989) 75-77.Search in Google Scholar

Zhu X., Kim K.-H., Jeong J.: Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials 22 (2001) 2199-2206.Search in Google Scholar

Krasicka-Cydzik E.: Gel-like layer development during formation of thin anodic films on titanium in phosphoric acid solutions. Corrosion Sci. 46 (2004) 2487-2502Search in Google Scholar

Sobieszczyk S.: Hydroxyapatite coatings on porous Ti and Ti alloys. Advances in Materials Science No. 1, 10 (2010) 19-28.Search in Google Scholar

Sobieszczyk S., Zieliński A.: Coatings in arthroplasty. Advances in Materials Science No. 4, 8 (2008) 35-54.Search in Google Scholar

Mohammadi Z., Ziaei-Moayyed A. A., Sheikh-Mehdi Mesgar A.: Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings. Applied Surface Science 253 (2007) 4960-4965.Search in Google Scholar

Stoch A., Jastrzębski W., Długoń E., Lejda W., Trybalska B., Stoch G. J., Adamczyk A.: Sol-gel derived hydroxyapatite coatings on titanium and its alloy Ti6Al4V. Journal of Molecular Structure 744-747 (2005) 633-640.Search in Google Scholar

Yamaguchi T., Tanaka Y., Ide-Ektessabi A.: Fabrication of hydroxyapatite thin films for biomedical applications using RF magnetron sputtering. Nuclear Instruments and Methods in Physics Research B 249 (2006) 723-725.Search in Google Scholar

Giavaresi G., Ambrosio L., Battistion G. A., Casellato U., Gerbasi R., Finia M., Aldini N. N., Martini L., Rimondini L., Giardino R.: Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour depostion: an in vivo study. Biomaterials 25 (2004) 5583-5591.Search in Google Scholar

Lee I-S., Zhao B., Lee G-H., Choi S-H., Chung S-M.: Industrial application of ion beam assisted deposition on medical implants. Surface and Coatings Technology 201 (2007) 5132-5137.Search in Google Scholar

Kim H., Camata R. P., Lee S. i in.: Crystallographic texture in pulsed laser deposited hydroxyapatite bioceramic coatings. Acta Mater. 55 (2007) 131-139.Search in Google Scholar

Mayr H., Ordung M., Ziegler G.: Development of thin electrophoretically deposited hydroxyapatite layers on Ti6Al4V hip prosthesis. Journal of Material Science 41 (2006) 8138-8143.Search in Google Scholar

Zheng X., Huang M., Ding Ch.: Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials 21 (2000) 841-849.Search in Google Scholar

Khor K. A., Gu Y. W., Pan D., Cheang P.: Microstructure and mechanical properties of plasma sprayed HA/YSZ/Ti-6Al-4V composite coatings. Biomaterials 25 (2004) 4009-4017.Search in Google Scholar

Lu Y-P., Li M-S., Li S-T., Wang Z-G., Zhu R-F.: Plasma-sprayed hydroxyapatite +titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25 (2004) 4393-4403.Search in Google Scholar

Chou B-Y., Chang E.: Plasma-sprayed hydroxyapatite coating on titanium alloy with ZrO2 second phase and ZrO2 intermediate layer. Surface and Coating Technology 153 (2002) 84-92.Search in Google Scholar

Fu L., Khor K. A., Lim J. P.: The evaluation of powder processing on microstructure and mechanical properties of hydoxyapatite (HA)/yttria stabilized zirconia (YSZ) composite coatings. Surface and Coatings Technology 140 (2001) 263-268.Search in Google Scholar

Liao S., Watari F., Zhu Y., Uo M., Akasaka T., Wang W., Xu G., Cui F.: The degradation of the three layered nano-caronated hydroxyapatite/collagen/PLGA composite membrane in vitro. Dental Materials 23 (2007) 1120-1128.Search in Google Scholar

Wang L., Li Ch.: Preparation and physicochemical properties of a novel hydroxyapatite/chitosan - silk fibroin composite. Carbohydrate Polymers 68 (2007) 740-745.Search in Google Scholar

F. L. S., Borges Ch.S., Branco J. R. T., Pereira M. M.: Structural analysis of hydroxyapatite/bioactive glass composite coatings obtained by plasma spray processing. Journal of Non-Crystalline Solids 247 (1999) 64-68.Search in Google Scholar

Jansen J. A., Vehof J. W. M., Ruhe P. Q., et al.: Growth factor-loaded scaffolds for bone engineering. Journal of Controlled Release 101 (2005) 127-136.Search in Google Scholar

Eliaz N., Sridhar T. M., Kamachi Mudali U., Raj B.: Electrochemical and electrophoretic deposition of hydroxyapatite for orthopaedic. Surface Engineering No. 3, 21 (2005) 238-242.Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials