Open Access

Chemical characteristics of new nanopowder of titania doped with nitrogen atoms


Cite

Fujishima A., Honda K.: Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 238 (1974) 37-38.Search in Google Scholar

Damm C.: An acrylate polymerization initiated by iron doped titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry 18 (2006) 297-305.Search in Google Scholar

He C., Xiong Y., Shu D., Zhu X., Li X.: Preparation and photoelectrocatalytic activity of Pt(TiO2)-TiO2 hybrid films. Thin Solid Films 503 (2006) 1-7.Search in Google Scholar

Ghosh A. K., Maruska H. P.: Photoelectrolysis of Water in Sunlight with Sensitized Semiconductor Electrodes. Journal of Electrochemical Society 124 (1977) 1516-1522.Search in Google Scholar

Anpo M.: Photocatalysis on titanium oxide catalysts: Approaches in achieving highly efficient reactions and realizing the use of visible light. Catalysis Surveys from Japan 1 (1997) 169-179.Search in Google Scholar

Irie H., Watanabe Y., Hashimoto K.: Carbon-doped TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters 32 (2003) 772-773.Search in Google Scholar

Yu J. C., Yu J. G., Jiang Z., Zhang W. K.: Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chemistry of Materials 14 (2002) 3808-3816.Search in Google Scholar

Ho W., Yu J., Lee S. C.: Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. Journal of Solid State Chemistry 179 (2006) 1171-1176.Search in Google Scholar

Liu S., Chen H.: A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazardous Materials 152 (2008) 48-55.Search in Google Scholar

Zaleska A., Górska P., Sobczak J. W., Hupka J.: Thioacetamide and thiourea impact on visible light activity of TiO2. Applied Catalysis B: Environmental 76 (2007) 1-8.Search in Google Scholar

Huang D., Liao S., Quan S., Liu L., He Z., Wan J., Zhou W.: Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process. Journal of Non-Crystalline Solids 354 (2008) 3965-3972.Search in Google Scholar

Asahi R., Ohikawa T., Aoki K., Taga Y.: Visible - Light Photocatalysis Nitrogen-Doped Titanium Oxides. Science 293 (2001) 269-271.Search in Google Scholar

Górska P., Zaleska A., Kowalska E., Klimczuk T., Sobczak J. W., Skwarek E., Janusz W., Hupka J.: TiO2 photoactivity in VIS and UV Light: The influence of calcination temperature and surface properties. Applied Catalysis B: Environmental 84 (2008) 440-447.Search in Google Scholar

Kobayakawa K., Murakami Y., Sato Y.: Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea. Journal of Photochemistry and Photobiology A: Chemistry, 170 (2005) 177-179.Search in Google Scholar

Sakatani Y., Okusako K., Koike H., Ando H.: Proceedings of the Symposium on Recent Development of Photocatalysis. Photofunctional Materials Society of Japan (2001) 10 (abstract).Search in Google Scholar

Yuan J., Chen M., Shi J., Shangguan W.: Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. International Journal of Hydrogen Energy 31 (2006) 1326-1331.Search in Google Scholar

Ao W., Li J., Yang H., Zeng X., Ma X.: Mechanochemical synthesis of zinc oxide nanocrystalline. Powder Technology 168 (2006) 148-151.Search in Google Scholar

Bianchi C. L., Cappelletti G., Ardizzone S., Gianella S., Naldoni A., Oliva C., Pirola C.: N-doped TiO2 from TiCl3 for photodegradation of air pollutants. Catalysis Today 144 (2009) 31-36.Search in Google Scholar

Allan N. K., Grimes C. A.: Formation of Vertically Oriented TiO2 Nanotube Arrays using a Fluoride Free HCl Aqueous Electrolyte. The Journal of Physical Chemistry C 111 (2007) 13028-13032.Search in Google Scholar

Gunes. S., Neugebauer H., Sariciftci N. S., Roither J., Kovalenko M., Pillwein G., Heis W. Hybrid Sollar Cells Using HgTe Nanocrystals and Nanoporous TiO2 Electrodes. Journal Material Chemistry 16 (2006) 1095-1099.Search in Google Scholar

Bonhote P., Grätzel M., Heinen S., Walder L.: Electrochromic devices based on surface-modified nanocrystalline TiO2 thin-film electrode. Solar Energy Materials & Solar Cells 56 (1999) 281-297.Search in Google Scholar

Akikusa J., Kha S. U. M.: Photoresponse and IC impedance characterization of n-TiO2 films during hydrogen and oxygen evolution reactions in an electrochemical cell. International Journal of Hydrogen Energy 22 (1997) 875-882.Search in Google Scholar

Munoz G., Chen Q., Schmuki P.: Interfacial properties of self-organized TiO2 nanotubes studied by impedance spectroscopy. Journal of Solid State Electrochemistry 11 (2007) 1077-1084.Search in Google Scholar

Gordon F., Gomes W. P.: On the determination of the flat-band potential of a semiconductor in contact with a metal or an electrolyte from the Mott-Schottky plot. Journal of Applid Physics D 11 (1978) L63-67.Search in Google Scholar

Madhusudan Reddy K., Baruwati B., Jaylakshmi M., Mohan Rao M., Manorama S. V.: Synthesis, characterization and redox charge transfer study, Journal of Solid State Electrochemistry 178 (2005) 3352-3358.Search in Google Scholar

Lisowska-Oleksiak A., Szybowska K.: Polish Patent Application No P387329, Sposób otrzymywania proszku ditlenku tytanu domieszkowanego azotem.Search in Google Scholar

Perez-Blanco J. M., Barber G. D.: Ambient atmosphere bonding of titanium foil to a transparent conductive oxide and anodic growth of titanium dioxide nanotubes. Solar Energy Materials and Solar Cells 92 (2008) 997-1002.Search in Google Scholar

Spurr R. A., Myers H.: Quantitative Analysis of Anatase — Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry 29 (1957) 760-762.Search in Google Scholar

Shin H., Jung H. S., Hong K. S., Lee J. K. Crystal phase evolution of TiO2 nanoparticles with reaction time in acidic solutions studied via freeze-drying method. Journal of Solid State Chemistry 178 (2005) 15-21.Search in Google Scholar

Salari M., Rezaee M., Marashi S. P. H., Aboutalebi S. H.: The role of the diluent phase in the mechanochemical preparation of TiO2 particles. Powder Technology 192 (2009) 54-57.Search in Google Scholar

Ding J., Tsuzuki T., McCormick P. G., Street R.: Structure and magnetic properties of ultrafine Fe powders by mechanochemical processing. Journal of Magnetism and Magnetic Materials 162 (1996) 271-276.Search in Google Scholar

Tsuzuki T., McCormick P. G.: Structure and magnetic properties of ultrafine Fe powders by mechanochemical processing. Journal of Magnetism and Magnetic Materials 162 (1996) 5143-5146.Search in Google Scholar

Guang-Lai L., Guang-Hou W.: Morphologies of rutile from TiO2 twin crystals. Journal of Materials Science Letters 18 (1999) 1243-1246.Search in Google Scholar

Bai X., Xie B., Pan N., Wang X., Wang H.: Novel three-dimensional dandelion-like TiO2 structure with high photocatalytic activity, Journal of Solid State Chemistry 181 (2008) 450-456.Search in Google Scholar

Sakthivel S., Kisch H.: Photocatalytic and Photoelectrochemical Properties of Nitrogen-Doped Titanium Dioxide. A European Journal of Chemical Physics and Physical Chemistry 4 (2003) 487-490.Search in Google Scholar

Zhao Y., Qiu H., Burda C.: The Effects of sintering on the Photocatalytic Activity of N-doped TiO Nanoparticles, Chemistry of Materials 20 (2008) 2629-2636.Search in Google Scholar

Navio J. A., Cerrillos C., Real C.: Photo-inducted Transformation, upon UV Illumination in Air, of Hyponitrile Species N2O22- Preadsorbed in TiO2 Surface. Surface and Interface analysis 24 (1996) 355-359.Search in Google Scholar

Li Y., Xie C., Peng S., Lu G., Li S.: Eosin Y-sensitized nitrogen-doped TiO2 for efficient visible light photocatalytic hydrogen evolution. Journal of Molecular Catalysis A: Chemical 282 (2008) 117-123.Search in Google Scholar

Liu S., Chen X., Chen X.: Preparation of N-Doped Visible-Light Response Nanosize TiO2 Photocatalyst Using the Acid-Catalyzed Hydrolysis Method. Chinese Journal of Catalysis 27 (2006) 697-702.Search in Google Scholar

Ihara T., Miyoshi M., Iriyama Y., Matsumoto M., Sugihara S.: Visible-light-active oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Applied catalysis B: Environmental 42 (2003) 403-414.Search in Google Scholar

NIST Standard Reference Database Number 69 http://webbook.nist.gov/chemistry/Search in Google Scholar

Kavan L., Grätzel M.: Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis. Electrochimica Acta 40 (1995) 643-652.Search in Google Scholar

Boukamp B. A.: Nonlinear Least Square Fit for analysis of immitance data of electrochemical systems. Solid State Ionics 20 (1986) 31-44.Search in Google Scholar

Bard A. L., Faulkner L. R.: Electrochemical Methods: Fundamentals and Application, 2nd edn, John Wiley & Sons, Inc., New York, 2001Search in Google Scholar

Mrowetz M., Balcerski W., Colussi A. J., Hoffmann M. R.: Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. Journal of Physics Chemistry B 108 (2004) 17269-17273.Search in Google Scholar

eISSN:
2083-4799
ISSN:
1730-2439
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Materials Sciences, Functional and Smart Materials