Open Access

The Current Knowledge of Invertebrate Aquaporin Water Channels with Particular Emphasis on Insect AQPs


Cite

Aquaporins (AQPs) or water channels are some of the most ubiquitous integral membrane proteins, and are present in all living organisms. Their presence in the lipid bilayer of cell membranes considerably increases their permeability to water and, in some cases, to other small solutes. All AQPs, identified thus far, share the same structure, comprising of six transmembrane segments and two conserved regions forming the pore. Depending on the transported solutes, AQPs can be divided into two classes: ‘classical’ aquaporins (permeable only to water) and aquaglyceroporins (permeable also to glycerol and/or other solutes). Many subtypes of AQPs coexist in a single organism. Localization of particular subtypes of AQPs is tissue-specific. AQPs have been well characterized in almost all vertebrate classes. However, little is known about their counterparts in invertebrates. Most of the water channels characterized in invertebrates are found in insects. Therefore, the knowledge of aquaporins in invertebrates is generally limited to the information concerning water channels in this class of organism. Insects are characterized by an astonishing variety of physiological adaptations, notable in their feeding strategies or survival strategies in hostile environments. An example of such, is feeding on blood, or tolerating extreme cold or drought. It is likely that many of these adaptation patterns emerged due to the expression and regulation of particular aquaporins. Here we review the current state of knowledge of invertebrate AQPs (of insects and nematodes) and compare their structure and function with mammalian water channels

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry