Open Access

Radial Ball Bearing Inner Race Defect Width Measurement using Analytical Wavelet Transform of Acoustic and Vibration Signal

In the present work, an experiment is carried out with a customized test setup where the seeded defects are introduced in the form of an axial groove on the inner race of a radial ball bearing. The nature of the acoustic and vibration signal bursts, and their correlation with the inner race defects, are established and estimated. Experimental investigation reveals that the analytical wavelet transform (AWT) is an effective tool for analyzing the acoustic and vibration signals, transmitted from the bearing, in order to characterize and measure the defect size. In the recent work, AWT followed by the time marginal integration (TMI) have been implemented on acoustic and vibration signals of a defective radial bearing. Size of the defect in the inner race of bearing is corroborated well with AWT scalogram. The segregation of the defect is carried out on TMI graph across the highest amplitude spike, which is due to signal burst (due to a contact of ball with bearing inner race defect). This manual demarcation on TMI graph in time axis provides the time duration (contact between a ball and the inner race defect). Using this time duration of the ball passed over bearing inner race defect, RPM of shaft mounted across bearing, and the fundamental train frequency, the defect width is estimated. The deviation of the measured width from the actual, using the proposed method, is sought below 5%. Summarizing, the proposed method can be reckoned a suitable and reliable measurement of radial bearing inner race defect width from acoustic and vibration signal.

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing