Open Access

Non-Intrusive Device for Real-Time Circulatory System Assessment with Advanced Signal Processing Capabilities

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability - standards of measurement, physiological interpretation, and clinical use. Circulation, 93 (5), 1043-1065.Search in Google Scholar

Parati, G., Saul, J. P., Rienzo, M. D., Mancia, G. (1995). Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation: a critical appraisal. Hypertension, 25, 1267-1286.10.1161/01.HYP.25.6.1276Search in Google Scholar

Berntson, G., Cacciopo, J., Quigley, K., Fabro, V. (1994). Autonomic space and psychophysiological response. Psychophysiology, 31 (1), 44-61.10.1111/j.1469-8986.1994.tb01024.xSearch in Google Scholar

Dawson, S. L., Manktelow, B. N., Robinson, T. G., Panerai, R. B., Potter, J. F. (2000). Which parameters of beat-to-beat blood pressure and variability best predict early outcome after acute ischemic stroke? Stroke, 31, 463-468.10.1161/01.STR.31.2.463Search in Google Scholar

American College of Cardiology Cardiovascular Technology Assessment Committee. (1993). Heart rate variability for risk stratification of life-threatening arrhythmias. J. Am. Coll. Cardiology, 22, 948-950.10.1016/0735-1097(93)90217-OSearch in Google Scholar

Postolache, O., Girão, P. S., Postolache, G. (2007). New approach on cardiac autonomic control estimation based on BCG processing. In Canadian Conference on Electrical and Computer Engineering. Vancouver, Canada, IEEE, 876-879.10.1109/CCECE.2007.224Search in Google Scholar

Postolache, O., Postolache, G., Girão, P. (2007). New device for assessment of autonomous nervous system functioning in psychophysiology. In IEEE International Workshop on Medical Measurements and Applications. Warsaw, Poland, IEEE, 1-5.10.1109/MEMEA.2007.4285172Search in Google Scholar

Pinheiro, E. C., Postolache, O. (2008). Heart rate variability virtual sensor application in blood pressure assessment system. In Biomedical Engineering : Proceedings of the 6th IASTED International Conference. Innsbruck, Austria, Acta Press, 79-82.Search in Google Scholar

Muehslteff, J., Espina, J., Alonso, M., Aubert, X., Falck, T. (2008). Wearable body sensor network for continuous context-related pulse arrival time monitoring. In Biomedical Engineering : Proceedings of the 6th IASTED International Conference. Innsbruck, Austria, Acta Press, 378-383.Search in Google Scholar

Geddes, L. A., Voelz, M., James, S., Reiner, D. (1981). Pulse arrival time as a method of obtaining systolic and diastolic blood pressure indirectly. Med. Biol. Eng. Comput., 19, 671-672.10.1007/BF024427877334880Search in Google Scholar

Ma, T., Zhang, Y. T. (2005). A correlation study on the variabilities in pulse transit time, blood pressure, and heart rate recorded simultaneously from healthy subjects. In IEEE EMBS 27th Annual Conference. Shanghai, China, IEEE, 996-999.10.1109/IEMBS.2005.161658517282354Search in Google Scholar

Chen, W., Kobayashi, T., Ichikawa, S., Takeuchi, Y., Togawa, T. (2000). Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput., 38 (5), 569-574.10.1007/BF0234575511094816Search in Google Scholar

Sugo, Y., Tanaka, R., Soma, T., Kasuya, H., Sasaki, T., Sekiguchi, T., Hosaka, H., Ochiai, R. (1999). Comparison of the relationship between blood pressure and pulse wave transit times at different sites. In 1st Joint BMES/EMBS Conference Serving Humanity, Advancing Technology. Atlanta, USA, IEEE, 222.10.1109/IEMBS.1999.802273Search in Google Scholar

Steptoe, A., Smuylan, H., Gribbin, B. (1976). Pulse wave velocity and blood pressure change: calibration and applications. Psychophysiology, 13 (5), 488-493.10.1111/j.1469-8986.1976.tb00866.xSearch in Google Scholar

Gribbin, B., Steptoe, A., Sleight, P. (1976). Pulse wave velocity as a measure of blood pressure change. Psychophysiology, 13 (1), 86-90.10.1111/j.1469-8986.1976.tb03344.xSearch in Google Scholar

Espina, J., Falck, T., Muehlsteff, J., Aubert, X. (2006). Wireless body sensor network for continuous cuff-less blood pressure monitoring. In 3rd IEEE EMBS International Summer School and Symposium on Medical Devices and Biosensors. Boston, USA, IEEE, 11-15.10.1109/ISSMDBS.2006.360085Search in Google Scholar

Pinheiro, E. C., Postolache, O., Girão, P. (2009). Pulse arrival time and ballistocardiogram application to blood pressure variability estimation. In IEEE International Workshop on Medical Measurement and Applications. Cetraro, Italy, IEEE, 132-135.10.1109/MEMEA.2009.5167970Search in Google Scholar

Kiu, Y., Poon, C., Zhang, Y. (2008). A hydrostatic calibration method for the design of wearable PAT-based blood pressure monitoring devices. In IEEE EMBS 30th Annual Conference. Vancouver, Canada, IEEE, 1308-1310.Search in Google Scholar

Skinner, J., Anchin, J., Weiss, D. (2008). Nonlinear analysis of the heartbeats in public patient ECGs using an automated PD2i algorithm for risk stratification of arrhythmic death. Ther. Clin. Risk Manag., 4 (2), 549-557.10.2147/TCRM.S2521Search in Google Scholar

Yeragani, V. K., Srinivasan, K., Vempati, S., Pohl, R., Balon, R. (1993). Fractal dimension of heart rate time series: an effective measure of autonomic function. J. Appl. Phys., 75 (6), 2429-2438.10.1152/jappl.1993.75.6.2429Search in Google Scholar

Skinner, J., Pratt, C., Vybiral, T. (1993). A reduction in the correlation dimension of heartbeat intervals precedes imminent ventricular fibrillation in human subjects. Am. Heart J., 125 (3), 731-743.10.1016/0002-8703(93)90165-6Search in Google Scholar

Vybiral, T., Skinner, J. (1993). The point correlation dimension of R-R Intervals predicts sudden cardiac death among high-risk patients. In Computers in Cardiology, London, UK, IEEE, 257-260.10.1109/CIC.1993.378455Search in Google Scholar

Storella, R., Wood, H., Mills, K., Kanters, J., Højgaard, M., Holstein-Rathlou, N. (1998). Approximate entropy and point correlation dimension of heart rate variability in healthy subjects. Integr. Physiol. Behav. Sci., 33 (4), 315-320.10.1007/BF0268869910333974Search in Google Scholar

Yeragani, V., Sobolewski, E., Jampala, V., Kay, J., Yeragani, S., Igel, G. (1998). Fractal dimension and approximate entropy of heart period and heart rate: awake versus sleep differences and methodological issues. Clin. Sci., 95 (3), 295-301.10.1042/CS19970268Search in Google Scholar

Perkiömäki, J., Mäkikallio, T., Huikuri, H. (2005). Fractal and complexity measures of heart rate variability. Clin. Exp. Hypertens., 27 (2-3), 149-158.10.1081/CEH-48742Search in Google Scholar

Richman, J., Moorman, J. (2000). Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol., 278 (6), 2039-2049.10.1152/ajpheart.2000.278.6.H203910843903Search in Google Scholar

Rosso, O., Martin, M., Figliola, A., Keller, K., Plastino, A. (2006). EEG analysis using wavelet-based information tools. J. Neurosci. Methods, 153 (2), 163-182.10.1016/j.jneumeth.2005.10.00916675027Search in Google Scholar

Lunak, D. R., Bryngelson, R. S. (2006). Noninvasive Blood Pressure Monitor Having Automatic High Motion Tolerance. U. S. Patent No. 7,052,465. Washington, D. C.: U. S. Patent and Trademark Office.Search in Google Scholar

Foo, J. Y. A., Lim, C. S. (2006). Pulse transit time as an indirect marker for variations in cardiovascular related reactivity. Technol. Health Care, 14 (2), 97-108.10.3233/THC-2006-14205Search in Google Scholar

Muehlsteff, J., Aubert, X., Schuett, M. (2006). Cuffless estimation of systolic blood pressure for short effort bicycle tests: the prominent role of the pre-ejection period. In IEEE EMBS 28th Annual Conference. New York, USA, IEEE, 5088-5092.10.1109/IEMBS.2006.26027517946673Search in Google Scholar

Payne, R. A., Symeonides, C. N., Webb, D. J., Maxwell, S. R. J. (2006). Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol., 100, 136-141.10.1152/japplphysiol.00657.200516141378Search in Google Scholar

Pinheiro, E. C., Postolache, O., Girão, P. (2010). Theory and developments in an unobtrusive cardiovascular system representation: Ballistocardiography. Open Biomed. Engin. J., 4, 201-216.10.2174/1874120701004010201311173121673836Search in Google Scholar

Schroeder, M. (1991). Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. New York, USA: W. H. Freeman.Search in Google Scholar

Costa, M., Goldberg, A. L., Peng, C. K. (2002). Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett., 89 (6), 021906.10.1103/PhysRevLett.89.06810212190613Search in Google Scholar

Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA, 88, 2297-2301.10.1073/pnas.88.6.22975121811607165Search in Google Scholar

Richman, J. S., Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol., 278 (6), 2039-2049.10.1152/ajpheart.2000.278.6.H2039Search in Google Scholar

Goldberger, A. L., Peng, C. K., Lipsitz, L. A. (2002). What is physiologic complexity and how does it change with aging and disease? Neurobiol. Aging, 23 (1), 23-26.Search in Google Scholar

Lekkala, J., Paajane, M. (1999). EMFi - new electret material for sensors and actuators. In 10th IEEE International Symposium on Electrets. Delphi, Greece, IEEE, 743-746.10.1109/ISE.1999.832151Search in Google Scholar

Strong, P. (1970). Biophysical Measurements. Beaverton, USA: Tektronix.Search in Google Scholar

Pinheiro, E. C., Postolache, O., Girão, P. (2010). Automatic wavelet detrending benefits to the analysis of cardiac signals acquired in a moving wheelchair. In 32nd Annual International Conference of the IEEE EMBS. Buenos Aires, Argentina, IEEE, 602-605.10.1109/IEMBS.2010.562664621096105Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing