Open Access

Measuring the T Wave of the Electrocardiogram; The How and Why


Cite

Einthoven, W., de Lint, K. (1900). Ueber das normale menschliche Elektrokardiogram und Uber die capillarelektrometrische Untersuchung einiger Herzkranken. Pflugers Arch. ges. Physiol., 80, 139-160.10.1007/BF01663110Search in Google Scholar

Ritsema van Eck, H.J., Kors, J.A., van Herpen, G. (2005). The U wave in the electrocardiogram: a solution for a 100-year-old riddle. Cardiovasc. Res., 67, 256-262.10.1016/j.cardiores.2005.04.010Search in Google Scholar

di Bernardo, D., Murray, A. (2002). Origin on the electrocardiogram of U-waves and abnormal U-wave inversion. Cardiovasc. Res., 53, 202-208.10.1016/S0008-6363(01)00439-4Search in Google Scholar

Schalij, M.J., et al. (eds.) (2002). Einthoven 2002: 100 Yeart of Electrocardiography. Leiden, Netherlands: The Einthoven Foundation, 616.Search in Google Scholar

Webster, J. (ed.) (1998). Medical Instrumentation, Application and Design. 3 ed. New York: Wiley.Search in Google Scholar

MettingVanRijn, A.C., Kuiper, A.P., Linnenbank, A.C., Grimbergen, C.A. (1993). Patient isolation in multichannel bioelectric recordings by digital transmission through a single optical fiber. IEEE Trans. Biomed. Eng., 40 (3), 302-8.10.1109/10.216416Search in Google Scholar

Winter, B.B., Webster, J.G. (1983). Driven-right-leg circuit design. IEEE Trans. Biomed. Eng., 30 (1), 62-66.10.1109/TBME.1983.325168Search in Google Scholar

Macfarlane, P.W. (1989). Lead systems. In Marfarlane, P.W., Lawrie, T.D.V. (eds.) Comprehensive Electrocardiology: Theory and Practice in Health and Disease. Pergamon Press, 315-352.Search in Google Scholar

Hoekema, R., Uijen, G.J.H., van Oosterom, A. (1999). The number of independent signals in body surface maps. Meth. Inform. Med., 38 (2), 119-124.Search in Google Scholar

Taccardi, B. (1963). Distribution of heart potentials on the thoracic surface of normal human subjects. Circ. Res., 12, 341-352.10.1161/01.RES.12.4.341Search in Google Scholar

Macfarlane, P.W. (1989). Normal limits. In Macfarlane, P.W., Lawrie, T.T.V. (eds.) Comprehensive Electrocardiology: Theory and Practice in Health and Disease. Vol. 3. Pergamon Press, 1441-1526.Search in Google Scholar

Jackman, W.M., Friday, K.J., Anderson, J.L., Aliot, E.M., Clark, M., Lazzara, R. (1988). The long QT syndromes: a critical review, new clinical observations and a unifying hypothesis. Prog. Cardiovasc. Dis., 31 (2), 115-172.10.1016/0033-0620(88)90014-XSearch in Google Scholar

Antzelevitch, C., et al. (2003). Brugada syndrome: 1992-2002. J. Am. Coll. Cardiol., 41 (10), 1665-1671.10.1016/S0735-1097(03)00310-3Search in Google Scholar

Gussak, I., Antzelevitch, C. (2000). Early repolarization syndrome: clinical characteristics and possible cellular and ionic mechanisms. J. Electrocardiol., 33, 299-309.10.1054/jelc.2000.1810611099355Search in Google Scholar

Faes, T.J.C. (1992). Assessment of Cardiovascular Autonomic Function. An Inquiry into Measurement. PhD Thesis, Vrije Universiteit Amsterdam.Search in Google Scholar

Wilson, F.N., Macleod, A.G., Barker, P.S. (1933). The distribution of action currents produced by the heart muscle and other excitable tissues immersed in conducting media. J. Gen. Physiol., 16, 423-456.10.1085/jgp.16.3.423214121919872716Search in Google Scholar

Plonsey, R. (1965). An extension of the solid angle formulation for an active cell. Biophysical J., 5, 663-666.10.1016/S0006-3495(65)86744-3Search in Google Scholar

Smythe, W.R. (1968). Static and Dynamic Electricity. New York: McGraw-Hill.Search in Google Scholar

Panofski, W.K.H., Phillips, M. (1962). Classical Electricity and Magnetism. London: Addison-Wesley.Search in Google Scholar

Geselowitz, D.B. (1989). On the theory of the electrocardiogram. Proc. IEEE, 77 (6), 857-876.10.1109/5.29327Search in Google Scholar

van Oosterom, A. (2009). The equivalent double layer; source model for repolarization. In Macfarlane, P.W., et. al. (eds.) Comprehensive Electrocardiology. Vol. 1. New York: Springer.Search in Google Scholar

Geselowitz, D.B. (1992). Description of cardiac sources in anisotropic cardiac muscle. Application of bidomain model. J. Electrocardiol., 25 Suppl., 65-67.10.1016/0022-0736(92)90063-6Search in Google Scholar

Gulrajani, R.M. (1998). Bioelectricity and Biomagnetism. New York: John Wiley & Sons.Search in Google Scholar

Barr, R.C., Ramsey, M., Spach, M.S. (1977). Relating epicardial to body surface potentials by means of transfer coefficients based on geometry measurements. IEEE Trans. Biomed. Eng., 24, 1-11.10.1109/TBME.1977.326201832882Search in Google Scholar

Oostendorp, T.F., van Oosterom, A. (1989). Source parameter estimation in inhomogeneous volume conductors of arbitrary shape. IEEE Trans. Biomed. Eng., 36, 382-391.10.1109/10.198592921073Search in Google Scholar

Huiskamp, G.J.M. (1998). Simulation of depolarization and repolarization in a membrane-equations-based model of the anisotropic ventricle. IEEE Trans. Biomed. Eng., 45 (7), 847-855.10.1109/10.6867929644893Search in Google Scholar

van Dam, P.M., van Oosterom, A. (2005). Volume conductor effects involved in the genesis of the P wave. Europace, 7, S30-S38.Search in Google Scholar

Huiskamp, G.J.M., van Oosterom, A. (1989). The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans. Biomed. Eng., 35 (12), 1047-1058.Search in Google Scholar

van Dam, P.M., et al. (2009). Non-invasive imaging of cardiac activation and recovery. Ann. Biomed. Eng, (in press).Search in Google Scholar

Fischer, G., et al. (2005). A signal processing pipeline for noninvasive imaging of ventricular preexcitation. Meth. Inform. Med., 44, 588-515.Search in Google Scholar

van Oosterom, A. Oostendorp, T. (2004). ECGSIM; an interactive tool for studying the genesis of QRST waveforms. Heart, 90, 165-168.10.1136/hrt.2003.014662176808514729788Search in Google Scholar

van Oosterom, A., Jacquemet, V. (2005). A parameterized description of transmembrane potentials used in forward and inverse procedures. In Int. Conf. Electrocardiol. Gdansk, Poland: Folia Cardiologica.Search in Google Scholar

Haws, C.W., Lux, R.L. (1990). Correlation between in vivo transmambrane action potential durations and activation-recovery intervals from electrograms. Circulation, 81 (1), 281-288.10.1161/01.CIR.81.1.281Search in Google Scholar

Durrer, D., et al. (1970). Total excitation of the isolated human heart. Circulation, 41, 899-912.10.1161/01.CIR.41.6.8995482907Search in Google Scholar

Franz, M.R., et al. (1987). Monophasic action potential mapping in a human subject with normal electrograms: direct evidence for the genesis of the T wave. Circulation, 75 (2), 379-386.10.1161/01.CIR.75.2.379Search in Google Scholar

Cowan, J.C., et al. (1988). Sequence of epicardial repolarization and configuration of the T wave. Br. Heart J., 60, 424-433.10.1136/hrt.60.5.42412166013203037Search in Google Scholar

Ihara, Z., van Oosterom, A., Hoekema, R. (2006). Atrial repolarization as observable during the PQ interval. J. Electrocardiol., 39, 290-297.10.1016/j.jelectrocard.2005.12.00116650429Search in Google Scholar

van Oosterom, A. (2002). The singular value decomposition of the T wave: its link with a biophysical model of repolarization. Int. J. Bioelectromagnetism, 4, 59-60.Search in Google Scholar

Janse, M.J., et al. (1980). Flow of injury current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canaine hearts; evidence for two different arrhythmogenic mechanisms. Circ. Res., 47, 151-165.10.1161/01.RES.47.2.151Search in Google Scholar

eISSN:
1335-8871
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Engineering, Electrical Engineering, Control Engineering, Metrology and Testing