Open Access

Influence of Laser Cladding Parameters on the Distribution of Elements in the Beads of Nickel-Based Ni-Cr-B-Si Alloy

Mazumder, J., Dutta, D., Ghosh, A., & Kikuchi, N. (2003). Designed materials: what and how. Proceedings of the SPIE, 4831, 505-516.10.1117/12.497593Search in Google Scholar

Wohlers, T. (2003). Wohlers Report-Rapid Prototyping. Tooling & Manufacturing State of the Industry, Wohlers Associates Inc., Colorado (USA).Search in Google Scholar

Malin, V., Jonson, R. N., & Sciammarelia, F. (2005). Laser cladding helps refurbish US Navy ship components. The AMPTIAC Quarterly, 8(3), 3-9.Search in Google Scholar

Koch, J, & Mazumder, J. (1993). Rapid prototyping by laser cladding (ed-s: P.Denney, I. Miyamoto, BL Mordike). Proceedings of ICALEO' 93, 77, 556-65.Search in Google Scholar

Mazumder, J., Koch, J., Nagarathnam, K., & Choi, J. (1996). Rapid manufacturing by laser aided direct deposition of metals. (ed-s: T. M. Cadle, K. S. Narasimhan). In: Advances in powder metallurgy and particulate materials, part 15. Princeton, NJ, Metal Powders Industries Federation (MPIF), 107-18.Search in Google Scholar

Mazumder, J., Choi, J., Nagarathnam, K., Koch, J., & Hetzner, D. (1997). Direct Metal Deposition (DMD) of H13 tool steel for 3-D components: microstructure and mechanical properties. J. Metals, 49(5), 55-60.Search in Google Scholar

Mazumder, J., Schifferer, A., & Choi, J. (1999). Direct materials deposition: designed macro and microstructure. Mater. Res. Innova, 3, 118-31.10.1007/s100190050137Search in Google Scholar

Keicher, D. M., & Smugersky, J. E. (1997). The laser forming of metallic components using particulate materials. J. Metals, 49 (5), 51-54.10.1007/BF02914686Search in Google Scholar

Milewski, J.O, Lewis, G. K., Thoma, D. J. et al (1997). Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. J. Mater. Process Tech., 75(1-3), 165-72.Search in Google Scholar

John, C. (2005). Laser Processing of Engineering Materials: Principles, Procedure and Industrial application. Elsevier Butterworth-Heintmann, Burlington, MA (USA).Search in Google Scholar

William, M. Steen. (2003). Laser Material Processing, 3rd ed-n. London: Springer.Search in Google Scholar

Toyserkani, E., Khajepour, A., & Corbin, S. (2005). Laser Cladding. Boca Raton (Florida): CRS Press.Search in Google Scholar

De Hosson, J.Th. M., & Ocelic, V. (2003). Functionally graded materials produced with high power lasers. In: Proceedings of ASTRA, 368-376. Hyderabad (India).10.4028/www.scientific.net/MSF.426-432.123Search in Google Scholar

Liu, C. Y., & Lin, J. (2003). Thermal processes of a powder particle in coaxial laser cladding. Opt. Laser Technol., 35 (2), 81-86.10.1016/S0030-3992(02)00145-7Search in Google Scholar

Wen, S. Y., Shin, Y. C., Murthy, J. Y., & Sojka, P. E. (2009). Modeling of coaxial powder flow for the laser direct deposition process. Intern. Journal of Heat and Mass Transfer, 52, 5867-5877.10.1016/j.ijheatmasstransfer.2009.07.018Search in Google Scholar

Zecovic, Srdja, Rajeev Dwvedi, & Kovacevic, Radovan. (2007). Numerical simulation and experimental investigation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition. Intern. J. of Machine Tools & Manufacture, 47, 112-123.10.1016/j.ijmachtools.2006.02.004Search in Google Scholar

ISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics