Open Access

Separation of Charging and Charge Transition Currents with Inductive Voltage Pulses

Inductive voltage pulses are generated in the electric circuit consisting of a DC power source, a pulse generator, a BUZ350 field transistor, a blocking diode, and a bifilarly wound transformer. Very short inductive voltage pulses arising at disruption of current in the primary circuit (>1 μs) are applied to a water electrolysis cell, which causes its quick charging followed by a relatively slower discharge tail. To take voltage and current pulses from the cell consisting of steel electrodes and water-KOH solution, an oscilloscope is employed. By changing the concentration of electrolyte and the distance between electrodes it is found that applying inductive voltage pulses to such a cell it is possible to separate the double-layer charging currents from the charge transition (Faradic) current.

ISSN:
0868-8257
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics