Open Access

Recycling of styrofoam waste: synthesis, characterization and application of novel phenyl thiosemicarbazone surface


Cite

1. Saima, Q.M., Bhanger, M.I., Hasany, S.M. & Khuhawar, M.Y. (2006). Sorption behavior of impregnated styrofoam for the removal of Cd(II) ions. Colloid. Surf. A. 279(1-3), 142-148. DOI: org/10.1016/j.colsurfa.2005.12.052.Search in Google Scholar

2. Sun, H., Zhang, Z. & Song, L. (2010). Study on production of an auxiliary agent of coagulation using waste polystyrene foam and its application to remove phenol from coking plant effluent. Environ. Progress Sust. Energy 29(4), 494-498. DOI: 10.1002/ep.10430.10.1002/ep.10430Search in Google Scholar

3. Rahili, A. & Bakar, D.R.A. (2011). Effect of calcination method on the catalytic degradation of polystyrene using al2o3 supported Sn and Cd catalysts. J. Appl. Sci. 11(8), 1346-1350. DOI: 10.3923/jas.2011.1346.1350.10.3923/jas.2011.1346.1350Search in Google Scholar

4. Inagaki, Y. & Kiuchi, S. (2001). Converting waste polystyrene into a polymer flocculant for wastewater treatment. J. Mater. Cycles Waste Manage. 3(1), 14-19. DOI: 10.1007/ s10163-000-0033-8.Search in Google Scholar

5. Abbes, B., Bayoudh, S. & Baklouti, M. (2008). The removal of hardness of water using sulfonated waste plastic. Desalination 222(1-3), 81-86. DOI: 10.1016/j.desal.0000.00.000.Search in Google Scholar

6. Sulkowski, W.W., Wolinska, A., Pentak, D., Maslanka, S. & Sulkowska, A. (2006). The influence of the chemical additives in polystyrene on the features of flocculants obtained during sulphonation of the polystyrene. Macromol. Symp. 245-246(1), 345-321. DOI: 10.1002/masy.200651389.10.1002/masy.200651389Search in Google Scholar

7. Sulkowski, W.W., Nowak, K., Sulkowska, A., Wolinska, A., Bajdui, W.M., Pentak, D. & Mikula, B. (2009). Study of the sulfonation of expanded polystyrene waste and of properties of the products obtained. Pure Appl. Chem. 81(12), 2417-2424. DOI: 10.1351/PAC-CON-08-11-20.10.1351/PAC-CON-08-11-20Search in Google Scholar

8. Sulkowski, W.W., Nowak, K., Sulkowska, A., Wolinska, A., Bajdur, W.M., Pentak, D. & Mikula, B. (2010). Chemical recycling of polystyrene. Sulfonation with different sulfonation agents. Mol. Cryst. Liq. Cryst. 523(1), 218-227. DOI: 10.1080/15421401003720140.10.1080/15421401003720140Search in Google Scholar

9. Wioletta, B., Justyna, P., Beata, M., Anna, S. & Wieslaw, W.S. (2002). Effective polyelectrolytes synthesised from expanded polystyrene wastes. Eur. Polym. J. l38(20), 299-304. DOI: org/10.1016/S0014-3057(01)00191-4.Search in Google Scholar

10. Senkal, B.F. & Yavuz, E. (2007). Sulfonamide based polymeric sorbents for selective mercury extraction. React.Funct. Polym. 67(12), 1465-1470. DOI: 10.1016/j.reactfunctpolym. 2007.07.017.Search in Google Scholar

11. Kyoung, R.P., Kang, P.H. & Chang, Y.N. (2005). Preparation of PFA-g-polystyrene sulfonic acid membranes by the c-radiation grafting of styrene onto PFA films. React. Funct. Polym. 65(1-2), 47-56. DOI: org/10.1016/j.reactfunctpolym.2004.11.009.Search in Google Scholar

12. Helminen, J. & Paatero, E. (2006). Inorganic solid supported polymer acid catalyst-Sulfonated Polystyrene grafted silica gel in liquid phase esterification. React. Funct. Polym. 66(10), 1021-1032. DOI: 10.1016/j.reactfunctpolym.2006.01.010.10.1016/j.reactfunctpolym.2006.01.010Search in Google Scholar

13. Rhodes, C.N., Brown, D.R., Plant, S. & Dale, J.A. (1999). Sulphonated polystyrene resins: acidities and catalytic activities. React. Funct. Polym. 40(3), 187-193. DOI: org/10.1016/ S1381-5148(98)00042-X.http://www.sciencedirect.com/science/ help/doi.htm10.1016/S1381-5148(98)00042-XSearch in Google Scholar

14. Wiesław, W. S., Agnieszka, W., Barbara S., Wioletta, M. B., & Anna, S. (2005). Preparation and properties of flocculants derived from polystyrenewaste. Polym. Degrad. Stability 90(2), 272-280. DOI: org/10.1016/j.polymdegradstab.2005.03.021.10.1016/j.polymdegradstab.2005.03.021Search in Google Scholar

15. Siyal, A.N., Memon, S.Q. & Khaskheli, M.I. (2012). Optimization and equilibrium studies of Pb(II) removal by Grewia Asiatica Seed: A factorial design approach. Polish J.Chem. Technol. 14(1), 17-77. DOI: 10.2478/v10026-012-0062-9.10.2478/v10026-012-0062-9Search in Google Scholar

16. Tan, I.A.W., Ahmad, A.L., & Hameed, B.H. (2008). Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology. Chem.Eng. J. 137(3), 462-470. DOI: 10.1016/j.cej.2007.04.031.10.1016/j.cej.2007.04.031Search in Google Scholar

17. Zulkali, M.M.D., Ahmad, A.L. & Norulakmal, N.H. (2006). Oryza, sativa l. Husk as heavy metal adsorbent: Optimization with lead as model solution. Bioresour. Technol. 97(1), 21-25. DOI: 10.1016/j.biortech.2005.02.007.10.1016/j.biortech.2005.02.00715963716Search in Google Scholar

18. Cronje, K.J., Chetty, K.,. Carsky, M.,Sahu, J.N. & Meikap, B.C. (2011). Optimization of chromium(VI) sorption potential using developed activated carbon from sugarcane bagasse with chemical activation by zinc chloride. Desalination 275(1-3), 276-284. DOI: 10.1016/j.desal.2011.03.019.10.1016/j.desal.2011.03.019Search in Google Scholar

19. Saima, Q.M., Hasany, S.M., Bhanger, M.I. & Khuhawar, M.Y. (2005). Enrichment of Pb(II) ions using phthalic acid functionalized XAD-16 resin as a sorbent. J. Colloid Interf.Sci. 291(1), 84-91. DOI: 10.1016/j.jcis.2005.04.112.10.1016/j.jcis.2005.04.11215963526Search in Google Scholar

20. Samatya, S., Mizuki, H., Yudai, I., Kawakita, H. & Kazuya, U. (2010). The effect of polystyrene as a porogen on the fluoride ion adsorption of Zr(IV) surface-immobilized resin. React. Funct. Polym. 70(1), 63-68. DOI: org/10.1016/j. reactfunctpolym.2009.10.004.10.1016/j.reactfunctpolym.2009.10.004Search in Google Scholar

21. Vijayakumar, G., Tamilarasan, R. & Dharmendirakumar, M. (2012). Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye rhodamine-b from aqueous solution by the use of natural adsorbent perlite. J. Mater.Environ. Sci. 3(1), 157-170.Search in Google Scholar

22. Giorgio, P. (2010). Thiosemicarbazone metal complexes: From structure to activity. The Open Crystallogr. J. 3, 16-28.10.2174/1874846501003020016Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering