Open Access

Zinc ion adsorption on carbon nanotubes in an aqueous solution

1. Rao, G., Lu, Ch. & Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purifi cation Technology 58, 224-231. DOI: 10.1016/j.seppur.2006.12.006.10.1016/j.seppur.2006.12.006Search in Google Scholar

2. Wang, H.J., Zhou, A.L., Peng, F., Yu, H. & Chen, L.F. (2007). Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution. Materials Science andEngineering A 466, 201-206. DOI: 10.1016/j.msea.2007.02.097.10.1016/j.msea.2007.02.097Search in Google Scholar

3. Li, Y.H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. & Wei, B. (2002). Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263-266. DOI: 10.1016/ S0009-2614(02)00502-X.10.1016/S0009-2614(02)00502-XSearch in Google Scholar

4. Lu, C. & Chiu, H. (2006). Adsorption of zinc (II) from water with purifi ed carbon nanotubes. Chemical EngineeringScience 61, 1138-1145. DOI: 10.1016/j.ces.2005.08.007.10.1016/j.ces.2005.08.007Search in Google Scholar

5. Stafi ej, A. & Pyrzynska, K. (2007). Adsorption of heavy metal ions with carbon nanotubes. Separation and Purifi cationTechnology 58, 49-52. DOI: 10.1016/j.seppur.2007.07.008.10.1016/j.seppur.2007.07.008Search in Google Scholar

6. Li, H.Y., Wang, S., Luan, A., Ding, J., Xu, C. & Wu, D. (2003). Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057-1062. DOI: 10.1016/S0008-6223(02)00440-2.10.1016/S0008-6223(02)00440-2Search in Google Scholar

7. Chingombe, P., Saha, B. & Wakeman, R.J. (2005). Surface modifi cation and characterization of a coal-based activated carbon. Carbon 43, 3132-3143. DOI: 10.1016/j.carbon.2005.06.021.10.1016/j.carbon.2005.06.021Search in Google Scholar

8. Biniak, S., Pakula, M., Szymanski, G.S. & Swiatkowski, A. (1999). Effect of activated carbon surface oxygen- and/ or nitrogen containing groups on adsorption of copper(II) ions from aqueous solution. Langmuir 15, 6117-6122. DOI: 10.1021/la9815704.10.1021/la9815704Search in Google Scholar

9. XU, Y., Rosa, A., LIU, X. & SU, D. (2011). Characterization and use of functionalized carbon nanotubes for the adsorption of heavy metal anions. New Carbon Materials 26 (1), 57-62. DOI: 10.1016/S1872-5805(11)60066-8.10.1016/S1872-5805(11)60066-8Search in Google Scholar

10. Bahgat, M., Farghali, A.A., El Rouby, W.M.A. & Khedr, M.H. (2011). Synthesis and modifi cation of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. Journal of Analytical and Applied Pyrolysis 92 (2), 307-313. DOI: 10.1016/j.jaap.2011.07.002.10.1016/j.jaap.2011.07.002Search in Google Scholar

11. Lu, C., Chiu, H. & Liu, C. (2006). Removal of zinc(II) from aqueous solution by purifi ed carbon nanotubes: kinetics and equilibrium studies. Ind. Eng. Chem. Res. 45, 2850-2855. DOI: 10.1021/ie051206h.10.1021/ie051206hSearch in Google Scholar

12. Li, Y.H., Di, Z., Ding, J., Wu, D., Luan, Z. & Zhu, Y. (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Wat. Res. 39, 605-609. DOI:10.1016/j.watres.2004.11.004.10.1016/j.watres.2004.11.00415707633Search in Google Scholar

13. Vukovic, G.D., Marinkovic, A.D., Colic, M., Risti, M. D., Aleksi, R., Peric-Grujic, A.A. & Uskokovic, P.S. (2010). Removal of cadmium from aqueous solutions by oxidized and Ethylenediamine-functionalized multi-walled carbon nanotubes. Chemical Engineering Journal 157, 238-248. DOI: 10.1016/j. cej.2009.11.026.Search in Google Scholar

14. AbdelSalam, M., Makki, M.I., Abdelaal, M.Y.A. & Salametal, M.A. (2010). Preparation and characterization of multi-walled carbon nanotubes/chitosan nanocomposite and its application for the removal of heavy metals from aqueous solution. Journal of Alloys and Compounds 529 (5), 2582-2587. DOI: 10.1016/j.jallcom.2010.11.094.10.1016/j.jallcom.2010.11.094Search in Google Scholar

15. Tarley, C.R., Santos, V.S., Baeta, B.E.L., Pereira, A.C. & Kubota, L.T. (2009). Simultaneous determination of zinc, cadmium and lead in environmental water samples by potentiometric stripping analysis (PSA) using multiwalled carbon nanotube electrode. Journal of Hazardous Materials 169, 256-262. DOI: 10.1016/j.jhazmat.2009.03.077.10.1016/j.jhazmat.2009.03.07719398268Search in Google Scholar

16. Shamspur, T. & Mostafavi, A. (2009). Application of modifi ed multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II). Journal of Hazardous Materials 168, 1548-1553. DOI:10.1016/j.jhazmat.2009.03.028.10.1016/j.jhazmat.2009.03.02819346070Search in Google Scholar

17. Pillay, K., Cukrowska E. M. & Coville N. J. (2009). Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. Journal of Hazardous Materials 166, 1067-1075. DOI:10.1016/j.jhazmat.2008.12.011.10.1016/j.jhazmat.2008.12.01119157694Search in Google Scholar

18. Pyrzynska, K. & Bystrzejewski, M. (2010). Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects 362 102-109. DOI:10.1016/j.colsurfa.2010.03.047.10.1016/j.colsurfa.2010.03.047Search in Google Scholar

19. Sheng, G., Li, J., Shao, D., Hu, J., Chen, Ch., Chen, Y. & Wang, X. (2010). Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. Journal of Hazardous Materials 178, 333-340. DOI:10.1016/j.jhazmat.2010.01.084.10.1016/j.jhazmat.2010.01.08420153111Search in Google Scholar

20. El-Sheikh, A.H., Al-Degs, Y., Al-Asad, R.M. & Sweileh, J.A. (2010). Effect of oxidation and geometrical dimensions of carbon nanotubes on Hg(II) sorption and preconcentration from real waters. Desalination 270 (3), 214-220. DOI: 10.1016/j. desal.2010.11.048.Search in Google Scholar

21. DAngelo, P., Migliorati, V., Mancini, G. & Chillemi, G. (2008). A coupled molecular dynamics and XANES data analysis investigation of aqueous cadmium (II). J. Phys. Chem. A 112, 11833-11841. DOI:10.1021/jp806098r.10.1021/jp806098r18947218Search in Google Scholar

22. Allen, M.P. & Tildesley, D.J. (1987). Computer simulation of liquids. Clarendon Press, Oxford, hardback.Search in Google Scholar

23. Ansari dezfoli, A.R., Adabavazeh, Z. & Mehrabian, S. (2011). A molecular dynamic simulation investigation into the behavior of water molecules inside carbon nanotubes. NanomechanicsScience and Technology: An International Journal 1, 247-255. DOI: 10.1615/NanomechanicsSciTechnolIntJ.v1.i3.10.1615/NanomechanicsSciTechnolIntJ.v1.i3Search in Google Scholar

24. Banerjee, S., Murad, S. & Puri, I.K. (2007). Preferential ion and water intake using charged carbon nanotubes. ChemicalPhysics Letters 434, 292-296. DOI:10.1016/j.cplett.2006.12.025.10.1016/j.cplett.2006.12.025Search in Google Scholar

25. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A. & Haak, J.R. (1984). Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684-3690. DOI:10.1063/1.448118.10.1063/1.448118Search in Google Scholar

26. Attard, Ph., Antelmi, D. & Larson, I. (2000). Comparison of the zeta potential with the diffuse layer potential from charge titration, Langmuir 16, 1542-1552. DOI:10.1021/la990487t. 10.1021/la990487tSearch in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering