Open Access

Photocatalytic mineralisation of humic acids using TiO2 modified by tungsten dioxide/ hydrogen peroxide


Cite

Murray, C. A. & Parsons, S. (2004). Removal of NOM from drinking water: Fenton's and photo-Fenton's processes. Chemosphere. 54, 1017-1023. DOI: 10.1016/j.chemosphere.2003.08.040.10.1016/j.chemosphere.2003.08.040Search in Google Scholar

Libecki, B. (2011). The effectiveness of humic acids coagulation with the use of cationic polyacrylamides. Water Science & Technology 63, 1944-1949. DOI: 10.2166/wst.2011.19410.2166/wst.2011.194Search in Google Scholar

Wei, M. C., Wang, K. S., Hsiao, T. E., Lin, I. C., Wu, H. J., Wu, Y. L., Liu, P. H. & Chang, S. H. (2011). Effects of UV irradiation on humic acid removal by ozonation, Fenton and Fe0/air treatment: THMFP and biotoxicity evaluation. Journal of Hazardous Materials 195, 324-31. DOI: 10,1016/j.jhazmat,2011.08.044Search in Google Scholar

Tryba, B., Brozek, P., Piszcz, M. & Morawski, A. W. (2011), New photocatalyst for decomposition of humic acids in photocatalysis and photo-Fenton processes. Polish Journal of Chemical Technology 13, 8-4. DOI: 10.2478/v10026-011-0042-5.10.2478/v10026-011-0042-5Search in Google Scholar

Wiszniowski, J., Didier, R., Surmacz-Gorska, J. & Miksch, K. (2002). Photocatalytic decomposition of humic acids on TiO2: Part I: Discussion of adsorption and mechanism. J. Photochem. Photobiol. A: Chem. 152, 267-273.10.1016/S1010-6030(02)00022-9Search in Google Scholar

Cho, Y. & Choi, W. (2002). Visible-light induced reactions of humic acids on TiO2. J. Photocham. Photobiol. A: Chem. 148, 129-135.10.1016/S1010-6030(02)00082-5Search in Google Scholar

Xuea, G., Liua, H., Chena, Q., Hills, C., Tyrerc, M. & Innocenta, F. (2011). Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites. Journal of Hazardous Materials 186, 765-772. DOI: 10.1016/j.jhazmat.2010.11.063.10.1016/j.jhazmat.2010.11.06321163573Search in Google Scholar

Dziedzic, J., Wodka, D., Nowak, P., Warszyński, P., Simon, C. & Kumakiri, I. (2010). Photocatalytic Degradation of the humic species as a method of their removal from water - comparison of UV and artificial sunlight irradiation. Physicochem. Probl. Miner. Process. 45, 15-28.Search in Google Scholar

Seery, M. K., George, R, Floris, P., Pillai, S. C. (2007). Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol. A: Chem. 189, 258. DOI:10.1016/j.jphotochem.2007.02.010.10.1016/j.jphotochem.2007.02.010Search in Google Scholar

Selvam, P., Kumar, S., Sivakumar, R., Anandan, S., Madhavan, J., Maruthamuthu, P., Ashokkumar, M. (2008). Photocatalytic degradation of Acid Red 88 using Au-TiO2 nanoparticles in aqueous solutions. Water Res. 42 4878-4884. DOI:10.1016/j.watres.2008.09.027.10.1016/j.watres.2008.09.02718945469Search in Google Scholar

Kim S., Lee, S. (2009). Visible light-induced photocatalytic oxidation of 4-chlorophenol and dichloroacetate in nitrided Pt-TiO2 aqueous suspensions, J. Photochem. Photobiol. A: Chem. 203, 145-150. DOI:10.1016/j.jphotochem.2009.01.01110.1016/j.jphotochem.2009.01.011Search in Google Scholar

Shen, H., Mi, L., Xu, P., Shen, W. & Pei-Nan, W. (2007). Visible-light photocatalysis of nitrogen-doped TiO2 nanoparticulate films prepared by low-energy ion implantation. Appl. Surf. Sri., 253, 7024-7028. DOI:10.1016/j.apsusc.2007.02.023.10.1016/j.apsusc.2007.02.023Search in Google Scholar

Janus, M., Choina, J. & Morawski, A. W. (2009). Azo dyes decomposition on new nitrogen-modified anatase TiO2 with high adsorptivity. J. Hazard. Mater. 166, 1-5. DOI:10.1016/j.jhazmat.2008.11.024.10.1016/j.jhazmat.2008.11.024Search in Google Scholar

Shen, M., Wu, Z., Huang, H., Du, Y., Zou, Z. & Yang, P. (2006). Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation. Mat. Lett. 60, 693-697. DOI:10.1016/j.matlet.2005.09.068.10.1016/j.matlet.2005.09.068Search in Google Scholar

Janus, M., Tryba, B., Kusiak, E., Tsumura, T., Toyoda, M., Inagaki, M., Morawski, A. W. (2009). TiO2 nanoparticles with high photocatalytic activity under visible light. Catal. Lett. 128, 36-39. DOI: 10.1007/s10562-008-9721-0.10.1007/s10562-008-9721-0Search in Google Scholar

Wang, P., Yap, P. S. & Lim, T. T. (2011). C-N-S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Appl. Catal. A 399, 252-261.10.1016/j.apcata.2011.04.008Search in Google Scholar

Li, X. Z., Li, F. B., Yang, C. L. & Ge, W. K. (2001). Photocatalytic activity of WOx-TiO2 under visible light irradiation. J. Photochem. Photobiol. A: Chem. 141, 209-217. DOI:10.1016/S1010-6030(01)00446-4.10.1016/S1010-6030(01)00446-4Search in Google Scholar

Song, H., Jiang, H., Liu, X. & Meng, G. (2006). Efficient degradation of organic pollutant with WOx modified nano TiO2 under visible irradiation. J. Photochem. Photobiol. A: Chem. 181, 421. DOI:10.1016/j.jphotochem.2006.01.001.10.1016/j.jphotochem.2006.01.001Search in Google Scholar

Shifu, C., Lei, C., Shen, G. & Gengyu, C. (2005). The preparation of coupled WO3/TiO2 photocatalyst by ball milling. Powd. Technol. 160, 198-202. DOI:10.1016/j.powtec.2005.08.01210.1016/j.powtec.2005.08.012Search in Google Scholar

Yang, H., Shi, R., Zhang, K., Hu, Y., Tang, A., Li, X. (2005). Synthesis of WO3/TiO2 nanocomposites via sol-gel method. J. Alloy. Comp. 398, 200. DOI:10.1016/j.-jall-com.2005.02.002.Search in Google Scholar

Ke, D., Liu, H., Peng, T., Liu, X. & Dai, K. (2008). Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles. Matt. Lett. 62, 447. DOI: 10.1016/j.matlet.2607.05.060.Search in Google Scholar

Tryba B., Piszcz M. & Morawski A. W. (2009). Photocatalytic activity of TiO2-WO3 composites. Int. J. Photoenergy. Article ID 297319. DOI:10.1155/2009/297319.10.1155/2009/297319Search in Google Scholar

Hathway, T., Rockefellow, E. M., Oh, Y. C., Jenks, W. S. (2009). Photocatalytic degradation using tungsten-modified TiO2 and visible light: Kinetic and mechanistic effect using multiple catalyst doping strategies. J. Photochem. Photobiol. A: Chem. 207, 197-203. DOI:10.1016/j.jphotochem.2009.07.010.10.1016/j.jphotochem.2009.07.010Search in Google Scholar

Saepurahman, Abdullah, M. A. & Chong, F. K. (2010). Preparation and characterization of tungsten-loaded titanium dioxide photocatalyst for enhanced dye degradation. J. Hazard. Mater. 176, 451-458. DOI:10.1016/j.jhazmat.2009.11.050.10.1016/j.jhazmat.2009.11.05019969415Search in Google Scholar

Sajjad, A. K. L., Shamaila, S., Tian, B., Chen, F. & Zhang, J. (2010). Comperative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. J. Hazard. Mater. 177, 781-791. DOI:10.1016/j.jhazmat.2009.12.102.10.1016/j.jhazmat.2009.12.102Search in Google Scholar

Akurati, K. K., Vital, A., Dellemann, J., Michalow, K., Graule, T., Ferri, D., Baiker, A. (2008). Flame-made WO3/TiO2 nanoparticles: Relation between surface acidity, structure and photocatalytic activity. Appl. Catal. B 79, 53. DOI:10.1016/j.apcatb.2007.09.036.10.1016/j.apcatb.2007.09.036Search in Google Scholar

Piszcz, M., Tryba, B., Grzmil, B. & Morawski, A. W. (2009). Photocatalytic removal of phenol under UV irradiation on WOx-TiO2 prepared by sol-gel method. Catal. Lett. 128, 190-196. DOI: 10.1007/s10562-008-9730-z.10.1007/s10562-008-9730-zSearch in Google Scholar

Kim, T., Burrows, A., Kiely, C. J., Wachs, I. E. (2007). Molecular/electronic structure-surface acidity relationships of model—supported tungsten oxide catalysts. J. Catal. 246, 370-381. DOI:10.1016/j.jcat.2006.12.018.10.1016/j.jcat.2006.12.018Search in Google Scholar

Kwon, Y. T., Song, K. Y., Lee, W. I., Choi, G. J. & Do, Y. R. (2000). Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J. Catal. 191, 192-199. DOI:10.1006/jcat.1999.2776.10.1006/jcat.1999.2776Search in Google Scholar

Yang, H., Zhang, D. & Wang, L. (2002). Synthesis and characterization of tungsten oxide-doped titania nanocrystallites. Matt. Lett. 57, 674-678. DOI:10.1016/S0167-577X(02)00852-2.10.1016/S0167-577X(02)00852-2Search in Google Scholar

Ishibashi, K., Fujishima, A., Watanabe, T., Hashimoto, K., (2000). Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem. Commun. 2, 207. DOI:10.1016/S1388-2481(00)00006-0.10.1016/S1388-2481(00)00006-0Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering