Open Access

Synthesis and characterization of nanostructured molybdenum & tungsten carbide materials, and study of diffusion model

Oyama, T., (1996). "The chemistry of transition metal carbides and nitrides," London, Chapman and Hall.10.1007/978-94-009-1565-7Search in Google Scholar

Storms, E. K., (1967). The Refractory Carbides, Academic Press, New York.10.1016/B978-1-4832-3070-2.50004-5Search in Google Scholar

Toth, L. E., (1971). Transition Metal Carbides and Nitrides, Academic Press, New York.Search in Google Scholar

Choi, J., Brenner, J. & Thompson, L. (1995). Pyridine Hydroenitrogenation Over Molybdenum Carbide Catalysts, Journal of Catalysis, 154, 33-40. DOI:10.1006/jcat.1995.1143.10.1006/jcat.1995.1143Search in Google Scholar

Oyama, S. T., Schlatter, J. C., Metclafe, J. E. & Lambert, J. M., (1988). Preparation and Characterization of Early Transition-Metal Carbides and Nitrides, Ind. Eng. Chem. Res., 27, 1639-1648. DOI: 10.1021/ie00081a013.10.1021/ie00081a013Search in Google Scholar

Gu, Y., Li, L., Chen, Z., Yang, Y. & Qian, Y., (2003). Synthesis of nanocrystalline Mo2C via sodium co-reduction of MoCl5 and CBr4 in Benzene, Mater. Res. Bull., 38, 1119-1122. DOI:10.1016/S0025-5408(03)00132-6.10.1016/S0025-5408(03)00132-6Search in Google Scholar

Hyeon, T., Fang, M. & Suslick, K., (1996). Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties, J. Am. Chem. Soc., 118, 5492-5493. DOI: 10.1021/ja9538187.10.1021/ja9538187Search in Google Scholar

Mcgee, R., Bej, S. & Thompson, L., (2005). Basic properties of molybdenum and tungsten nitride catalysts, Appl. Catal. A., 284, 139-146. DOI:10.1016/j.apcata.2005.01.029.10.1016/j.apcata.2005.01.029Search in Google Scholar

Weimer, A. (1997). Carbide, Nitride and Boride Materials Synthesis and Processing, New York, Chapman and Hall.10.1007/978-94-009-0071-4Search in Google Scholar

Giordano, C., Erpen, C., Yao, W. & Antoniettin, M., (2008). Synthesis of Mo and W Carbide and Nitride Nanoparticles via a Simple "Urea Glass" Route, Nano Lett., 8, 4659-4663. DOI: 10.1021/nl8018593.10.1021/nl801859319367981Search in Google Scholar

Patel, M. & Subrahmanyam, J., (2008). Synthesis of nanocrystalline molybdenum carbide (Mo2C) by solution route, Mater. Res. Bull., 43, 2036-2041. DOI:10.1016/j.mater-resbull.2007.09.025.Search in Google Scholar

Keller, N., Pietruszka, B. & Keller, V. (2006). A new one-dimensional tungsten carbide nanostructured material, Mater. Lett., 60, 1774-1777. DOI:10.1016/j.matlet.2005.12.017.10.1016/j.matlet.2005.12.017Search in Google Scholar

Singh, R. P., (2008). Synthesis and characterization of tungsten carbide nanoparticles. School of Physics & Materials Science, MS Thesis., Thapar University, Patiala.Search in Google Scholar

Yamada, K., (2000). Synthesis of tungsten carbide by dynamic shock compression of a tungsten-acetylene black powder mixture, J. Alloy Compd., 305, 253-258. DOI:10.1016/ S0925-8388(00)00700-3.10.1016/S0925-8388(00)00700-3Search in Google Scholar

Kurishita, H., Matsuso, S., Arakawa, H., Hirai, T., Linke, J., Kawai, M. & Yoshida, N. (2009). Development of nano-structured W and Mo materials, Adv. Mater. Res., 59, 18-30. DOI: 10.4028/www.scientific.net/AMR.59.18.10.4028/www.scientific.net/AMR.59.18Search in Google Scholar

de Medeiros, F. F. P., da Silva, A. G. P., de Souza, C. P. & Gomes, U. U., (2009). Carburization of Ammonium Paratungstate by Methane: The influence of Reaction Parameters, Int. J. Refract. Metals and Hard Materials., 27, 43-47. DOI:10.1016/j.ijrmhm.2008.03.001.10.1016/j.ijrmhm.2008.03.001Search in Google Scholar

Reddy, K. M., Rao, T. N., Radha, K. & Joardan, J. (2010). Nanostructured Tungsten Carbides by Thermochemical Processing, J. Alloys and Compounds., 494, 404-409. DOI:10.1016/j.jallcom.2010.01.059.10.1016/j.jallcom.2010.01.059Search in Google Scholar

Cetinkaya, S. & Eroglu, S. (2011). Comparative Kinetic & Structural Analysis of Nanocrystalline WC Powder Synthesis from Pre-reduced W under Pure and Diluted CH4 Atmospheres, Int. J. Refract. Metals and Hard Materials., 29, 214-220. DOI:10.1016/j.ijrmhm.2010.10.009.10.1016/j.ijrmhm.2010.10.009Search in Google Scholar

Oyama, S. T. (1981). "Ammonia synthesis and decomposition on molybdenum and its interstitial alloys." PhD Dissertation, Stanford University, Stanford, CA.Search in Google Scholar

Kanervo, J. (2003). "Kinetic analysis of temperature programmed reactions." PhD Dissertation, Helsinki University of Technology.Search in Google Scholar

Knotzinger, H. (1997). "Temperature-programmed reduction, In Handbook of Heterogeneous Catalysis," Eds. Etrl, G., Knozinger, H., Weitkamp, J., Vol 2, VCH, Weinheim, pp 676.Search in Google Scholar

Bhatia, S., Beltramini, I. & Do, D. D. (1990). "Temperature-programmed analysis and its applications in catalytic systems." Catal. Today, 7, 309-438.10.1016/0920-5861(90)87001-JSearch in Google Scholar

Jones, A. & McNicol, B. (1986). "Temperature-programmed reduction for solid materials characterization." Marcel Dekker Inc., New York.Search in Google Scholar

Lemaitre, J. L. (1984). "Temperature-programmed methods, in characterization of heterogeneous catalysts." Ed. Delannay, F., Marcel Dekker, Inc., New York, pp 29-70.Search in Google Scholar

Hurst, N. M., Gentry, S. J. & Jones, A. (1982). "Temperature - programmed desorption and reduction." Catal. Rev. -Sci. Eng., 24, 233-309.10.1080/03602458208079654Search in Google Scholar

Kanervo, J. M. & Krause, A. O. I. (2001) "Kinetic Analysis of temperature programmed reduction: behavior of a CrOx/ Al2O3 Catalyst." J. Phys. Chem. B, 105, 9778-9784.10.1021/jp0114079Search in Google Scholar

Rudy, E., Windish, S., Stosick, A. & Hoffman, J. (1967). Revision of the Titanium-Tungsten System, Trans TMS-AIME., 239, 1247-1267.Search in Google Scholar

Oyama, S. T., Schlatter, J., Metcalfe, J. & Lambert, J. (1988). Preparation and characterization of early transition metal carbides and nitrides, Ind. Eng. Chem. Res., 27, 1639-1648. DOI: 10.1021/ie00081a013.10.1021/ie00081a013Search in Google Scholar

Kapoor, R. & Oyama, S. T. (1997). Measurement of solid state diffusion coefficients by a temperature-programmed method, J. Mater. Res., 12, 467-473. DOI: 10.1557/JMR.1997.0068.10.1557/JMR.1997.0068Search in Google Scholar

Redhead, P. A., (1962). Thermal Desorption of Gases, Vacuum., 12, 203-211. DOI:10.1016/0042-207X(62)90978-8.10.1016/0042-207X(62)90978-8Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering