Open Access

Application of central composite design for the optimization of photo-destruction of a textile dye using UV/S2O82- process

   | Jan 08, 2010

Cite

Rauf, M. A. & Ashraf S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151, 10-18. DOI: 10.1016/j.cej.2009.02.026.10.1016/j.cej.2009.02.026Search in Google Scholar

Khataee, A. R., Vatanpour, V. & Amani, A. (2009). Decolorization of C. I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. J. Hazard. Mater. 161, 1225-1233. DOI: 10.1016/j.jhazmat.2008.04.075.10.1016/j.jhazmat.2008.04.075Search in Google Scholar

Konstantinou, I. K. & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations. Appl. Catal. B: Environ. 49, 1-14. DOI: 10.1016/j.apcatb.2003.11.010.10.1016/j.apcatb.2003.11.010Search in Google Scholar

Liu, Z., Kanjo, Y. & Mizutani S. (2009). Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ. 407, 731-748. DOI: 10.1016/j.scitotenv.2008.08.039.10.1016/j.scitotenv.2008.08.039Search in Google Scholar

Brodzik, K., Walendziewski, J. & Stolarsk M. (2007). Photodegradation of organic compounds in water. Pol. J. Chem. Technol. 9, 130-133. DOI: 10.2478/v10026-007-0072-1.10.2478/v10026-007-0072-1Search in Google Scholar

Morawski, A. W., Janus, M., Tryba, B., Toyoda, M., Tsumura, T. & Inagaki, M. (2009). Carbon modified TiO2 photocatalysts for water purification. Pol. J. Chem. Technol. 11, 46-50. DOI: 10.2478/v10026-009-0023-0.10.2478/v10026-009-0023-0Search in Google Scholar

Kurechi, T., Aizawa M. & Kunugi A. (1983). Studies on the antioxidants XVIII: Oxidation product of tertiary butyl hydroquinone (TBHQ) (I). J. Am. Oil Chem. Soc. 60, 1878-1882. DOI: 10.1007/BF02901542.10.1007/BF02901542Search in Google Scholar

Hepel, M. & Luo, J. (2001). Photoelectrochemical mineralization of textile diazo dye pollutants using nanocrystalline WO3 electrodes. Electrochimica Acta 47, 729-740. DOI: 10.1016/S0013-4686(01)00753-8.10.1016/S0013-4686(01)00753-8Search in Google Scholar

Lau, T. K., Chu, W. & Graham, N. J. D. (2007). The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization, Environ. Sci. Technol. 41, 613-619. DOI: 10.1021/es061395a.10.1021/es061395aSearch in Google Scholar

House, D. A. (1962). Kinetics and mechanism of oxidations by peroxydisulfate, Chem. Rev. 62, 185-203. DOI: 10.1021/cr60217a001.10.1021/cr60217a001Search in Google Scholar

Gara, P. M. D., Bosio, G. N., Gonzalez, M. C. & Mártire, D. O. (2007). Kinetics of the sulfate radical-mediated photooxidation of humic substances, Int. J. Chem. Kinet. 40, 19-24. DOI: 10.1002/kin.20287.10.1002/kin.20287Search in Google Scholar

Salari, D., Niaei, A., Aber, S. & Rasoulifard, M. H. (2009). The photooxidative destruction of C. I. Basic Yellow 2 using UV/S2O82- process in a rectangular continuous photoreactor, J. Hazard. Mater. 166, 61-66. DOI: 10.1016/j.jhazmat.2008.11.039.10.1016/j.jhazmat.2008.11.039Search in Google Scholar

Roig, B., Gonzalez, C. & Thomas, O. (1999). Measurement of dissolved total nitrogen in wastewater by UV photooxidation with peroxodisulphate, Anal. Chim. Acta 389, 267-274. DOI: 10.1016/S0003-2670(99)00212-3.10.1016/S0003-2670(99)00212-3Search in Google Scholar

Box, G. E. P. & Wilson, K. B. (1951). On the experimental attainment of optimum conditions, J. R. Stat. Soc., Ser. B Stat. Methodol. 13, 1-45. DOI:10.1111/j.2517-6161.1951.tb00067.xSearch in Google Scholar

Box, G. E. P. & Hunter, W. G. (1961). The 2k-p fractional factorial designs, J. Technometrics 3, 311-458. DOI: 10.2307/1271430.10.2307/1271430Search in Google Scholar

Obeng, D. P. Morrell, S. & Napier, T. J. N. (2005). Application of central composite rotatable design to modeling the effect of some operating variables on the performance of the three-product cyclone, Int. J. Miner. Process. 769, 181-192. DOI: 10.1016/j.minpro.2005.01.002.10.1016/j.minpro.2005.01.002Search in Google Scholar

Santos, S. C. R. & Boaventura, R. A. R. (2008). Adsorption modelling of textile dyes by sepiolite. Appl. Clay Sci. 42, 137-145. DOI: 10.1016/j.clay.2008.01.002.10.1016/j.clay.2008.01.002Search in Google Scholar

Box, G. E. P. & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. J. Technometrics 2, 455-475. DOI:10.1080/00401706.1960.10489912Search in Google Scholar

Zhang, X. Wang, R. Yang, X. & Yu, J. (2007). Central composite experimental design applied to the catalytic aromatization of isophorone to 3,5-xylenol. Chemometr. Intell. Lab. Sys. 89, 45-50. DOI: 10.1016/j.chemolab.2007.05.006.10.1016/j.chemolab.2007.05.006Search in Google Scholar

Lewandowski, G. & Cwirko, J. (2007). Uncommon applications of statistical methods of the design of experiments in chemical technology and environment protection. Pol. J. Chem. Technol. 9, 63-67. DOI: 10.2478/v10026-007-0092-x.10.2478/v10026-007-0092-xSearch in Google Scholar

Ahmadi, M. Vahabzadeh, F. Bonakdarpour, B. Mofarrah, E. & Mehranian, M. (2005). Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton's peroxidation. J. Hazard. Mater. 123, 187-195. DOI: 10.1016/j.jhazmat.2005.03.042.10.1016/j.jhazmat.2005.03.042Search in Google Scholar

Catalkaya, E. C. & Kargi, F. (2007). Effects of operating parameters on advanced oxidation of diuron by the Fenton's reagent: a statistical design approach. Chemosphere 69, 485-492. DOI: 10.1016/j.chemosphere.2007.04.033.10.1016/j.chemosphere.2007.04.033Search in Google Scholar

Gursesa, A., Yalcina, M. & Dogarb, C. (2000). Electro-coagulation of some reactive dyes: a statistical investigation of some electrochemical variables. Waste Manage. 22, 491-494. DOI: 10.1016/S0956-053X(02)00015-6.10.1016/S0956-053X(02)00015-6Search in Google Scholar

Ölmez, T. (2009). The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. J. Hazard. Mater. 162, 1371-1378. DOI: 10.1016/j.jhazmat.2008.06.017.10.1016/j.jhazmat.2008.06.017Search in Google Scholar

Cho, H. & Zoh, K. D. (2007). Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes Pigments 75, 533-543. DOI: 10.1016/j.dyepig.2006.06.041.10.1016/j.dyepig.2006.06.041Search in Google Scholar

Khataee, A. R. (2009). Photocatalytic removal of C. I. Basic Red 46 on immobilized TiO2 nanoparticles: artificial neural network modeling. Environ. Technol. 30 (11), 1155-1168. DOI: 10.1080/09593330903133911.10.1080/09593330903133911Search in Google Scholar

Aleboyeh, A., Daneshvar, N. & Kasiri, M. B. (2008). Optimization of C. I. Acid Red 14 azo dye removal by electro-coagulation batch process with response surface methodology. Chem. Eng. Process. 47, 827-832. DOI: 10.1016/j.cep.2007.01.033.10.1016/j.cep.2007.01.033Search in Google Scholar

Kasiri, M. B., Aleboyeh, H. & Aleboyeh, A. (2008). Modeling and optimization of heterogeneous photo-Fenton process with response surface methodology and artificial neural networks. Environ. Sci. Technol. 42, 7970-7975. DOI: 10.1021/es801372q.10.1021/es801372qSearch in Google Scholar

Liu, H. L. & Chiou, Y. R. (2005). Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chem. Eng. J. 112, 173-179. DOI: 10.1016/j.cej.2005.07.012.10.1016/j.cej.2005.07.012Search in Google Scholar

Harrelkas, F., Azizi, A., Yaacoubi, A., Benhammou, A. & Pons, M. N. (2009). Treatment of textile dye effluents using coagulation-flocculation coupled with membrane processes or adsorption on powdered activated carbon. Desalination 235, 330-339. DOI:10.1016/j.desal.2008.02.012.10.1016/j.desal.2008.02.012Search in Google Scholar

Li, Y., Chang, C. & Wen, T. (1996). Application of statistical experimental strategies to H2O2 production on Au/Graphite in alkaline solution. Ind. Eng. Chem. Res. 35, 4767-4771. DOI: 10.1021/ie960286+.10.1021/ie960286+Search in Google Scholar

Khataee, A. R. & Mirzajani, O. UV/peroxydisulfate oxidation of C. I. Basic Blue 3: Modeling of key factors by artificial neural network. Desalination In press. DOI: 10.1016/j.desal.2009.09.142.10.1016/j.desal.2009.09.142Search in Google Scholar

Behnajady, M. & Modirshahla, N. (2006). Evaluation of electrical energy per order (EEO) with kinetic modeling on photooxidative degradation of C. I. Acid Orange 7 in a tubular continuous-flow photoreactor. Ind. Eng. Chem. Res. 45, 553-557. DOI: 10.1021/ie050111c.10.1021/ie050111cSearch in Google Scholar

Zang, Y. & Farnood, R. (2005). Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide. Appl. Catal. B: Environ. 57, 275-282. DOI: 10.1016/j.apcatb.2004.11.005.10.1016/j.apcatb.2004.11.005Search in Google Scholar

Bolton, J. R., Bircger, K. Tumas, G. & Tolman, W. C. A. (2001). Figure-of merit for the technical development and application of advanced oxidation technologies for both electricand solar-derived systems. Pure Appl. Chem. 73, 627-637. DOI: 10.1351/pac200173040627.10.1351/pac200173040627Search in Google Scholar

Khataee, A. R. Pons, M. N. & Zahraa, O. (2009). Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J. Hazard. Mater. 168, 451-457. DOI: 10.1016/j.jhazmat.2009.02.052.10.1016/j.jhazmat.2009.02.052Search in Google Scholar

Khataee, A. R., Aleboyeh, H. & Aleboyeh, A. (2009). Crystallite phase-controlled preparation, characterization and photocatalytic properties of titanium dioxide nanoparticles. J. Experiment. Nanosci. 4, 121-137. DOI: 10.1080/17458080902929945.10.1080/17458080902929945Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering