Cite

Arabczyk, W. & Jasińska, I. (2004). Studies of the recrystalization process of the iron catalyst for ammonia synthesis. Proceedings of the 13th International Congress on Catalysis 2004, CD-ROM, Book of abstracts: 200 - 201.Search in Google Scholar

Jasińska, I. (2004). The verification of the model of active surface of ammonia synthesis catalyst. Unpublished doctoral dissertation, Szczecin University of Technology, Szczecin, Poland.Search in Google Scholar

Arabczyk, W. & Jasińska, I. (2006). The current state of knowledge of iron catalysts used in ammonia synthesis. Przem.Chem. 85/2, 130 - 137.Search in Google Scholar

Pelka, R., Pattek-Janczyk, A. & Arabczyk, W. (2008). Studies of the oxidation of nanocrystalline iron with oxygen by means of TG, MS, and XRD methods. J. Phys. Chem. C, 112, 13992 - 13996. DOI:10.1021/jp710163h.10.1021/jp710163hSearch in Google Scholar

Kałucki, K., Arabczyk, W., Narkiewicz, U. & Śpiewak, Z. (1994). Industrial catalyst for ammonia syntheis with higher thermal resistance. Przem. Chem., 73/5, 174 - 175.Search in Google Scholar

Barański, A., Pattek, A. & Reizer, A. (1978). Determination of the passivation layer thickness in iron catalysts for the ammonia synthesis. Bull. Acad. Polon. Sci. Ser. Sci. Chim., 26 353 - 358.Search in Google Scholar

Lubkowski, K., Arabczyk, W., Grzmil, B., Michalkiewicz, B. & Pattek-Jańczyk, A. (2007). Passivation and oxidation of an ammonia iron catalyst. Appl. Catal. A, 329, 137 - 147. DOI:10.1016/j.apcata.2007.07.006.10.1016/j.apcata.2007.07.006Search in Google Scholar

Chudinov, M.G., Minaev, D.M., Zaichko, G.N. & Alekseev, A.M. (1984). Study of the surface state and thichkness of oxide layer of dispersed iron promoted by potassium and aluminium oxides by X-ray photoelektron spectroscopy. Kinet. Katal. 25, 1205 - 1208.Search in Google Scholar

Khrizman, I.A. (1940). Stabilization of reduced catalyst for ammonia synthesis. Ber. Inst. Phys. Chem., Akad.Wiss.Ukr.S.S.R., 12, 15 - 20.Search in Google Scholar

Temkin, M. & Pyzhev, V.M. ().USSR Patent No. 64607.Search in Google Scholar

Burnett, J.A., Allgood, H.Y. & Hall, J.R. (1953). Stabilization of ammonia syntheisis catalyst. Ind. Eng. Chem., 45, 1678 - 1682.10.1021/ie50524a028Search in Google Scholar

Krylova, A.V., Morozov, V.V., Lachinov, S.S. & Torocheshnikov, N.S. (1978). Oxygen sorption and thermal regeneration of sorption centers on catalysts of ammonia synthesis in helium and hydrogen flow. React. Kinet. Catal. Lett., 9, 125 - 130.10.1007/BF02068911Search in Google Scholar

Tsarev, V.I., Aptekar, E.L., Krylova, A.V. & Torocheshnikov, N.S. (1980). Adsorption microcalometric studies of the interaction between oxygen and an industrial ammonia synthesis catalyst. React. Kinet. Catal. Lett,. 14, 279 - 282.10.1007/BF02073491Search in Google Scholar

Vasilevich, A.A., Blokhina, L.N., Chesnokova, R.V. & Minayev, D.M. (1988). Oxygen sorption on reduced iron catalysts with different content of promoters. React. Kinet. Catal. Lett., 36, 467 - 471.10.1007/BF02063849Search in Google Scholar

Krylova, A.V., Ustimenko, G.A. & Torocheshnikov, N.S. (1982). Preparation of non-pyrophoric metallic catalysts. Stud. Surf. Sci. Catal., 16, 441 - 450.10.1016/S0167-2991(09)60040-9Search in Google Scholar

Krylova, A.V., Tsarev, V.I., Peev, T.M., Kushnarenko, T.I. & Torocheshnikov, N.S. (1986).Interactions between catalysts for ammonia synthesis and oxygen. React. Kinet. Catal. Lett., 30, 229 - 235.10.1007/BF02064297Search in Google Scholar

Krylova, A.V., Ustomenko, G.A., Nefedova, N.V., Peev, T.M. & Torocheshnikov, N.S. (1986). Effective routes of stabilization of pyrophoric industrial catalysts. Appl. Catal., 20, 205 - 213. DOI:10.1016/0166-9834(86)80016-1.10.1016/0166-9834(86)80016-1Search in Google Scholar

Arabczyk, W., Pelka, R. & Arabczyk, M. (2006). Pol. Pat. No. 381907Search in Google Scholar

Arabczyk, W. & Ekiert, E. (2006). Pol. Pat. No. 381201Search in Google Scholar

McHenry, M.E., Majetich, S.A., Artman, J.O., DeGraef, M. & Staley, S.W. (1994). Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process. Phys. Rev. B, 49, 11358 - 11363. DOI:10.1103/PhysRevB.49.11358.10.1103/PhysRevB.49.1135810009988Search in Google Scholar

Saito, Y., Yoshikawa, T., Okuda, M. & Fujimoto, N. (1994). Cobalt particles wrapped in graphitic carbon prepared by an arc discharge method. J. Appl. Phys,. 75, 134 - 137. DOI:10.1063/1.35590110.1063/1.355901Search in Google Scholar

Yoshida, Y., Shida, S., Ohsuna, T. & Shiraga, N. (1994). Synthesis, identification, and growth mechanism of Fe, Ni, and Co crystals encapsulated in multiwalled carbon nanocages. J. Appl. Phys., 76, 4533-4539. DOI:10.1063/1.358446.10.1063/1.358446Search in Google Scholar

Setlur, A.A., Dai, J.Y., Lauerhaas, J.M. & Chang, R.P.H. (1998). Formation of filled carbon nanotubes and nanoparticles using polycyclic aromatic hydrocarbon molecules. Carbon, 36, 721 - 723. DOI:10.1016/S0008-6223(98)00044-X.10.1016/S0008-6223(98)00044-XSearch in Google Scholar

Dravid, V.P., Host, J.J., Teng, M.H., Elliott, B,. Hwang, J., Johnson, D.L., Mason, T.O. & Weertman, J.R. (1995). Controlled-size nanocapsules. Nature, 374, 602. DOI:10.1038/374602a0.10.1038/374602a0Search in Google Scholar

Jiao, J., Seraphin, S., Wang, X. & Withers, J.C. (1996). Preparation and properties of ferromagnetic carbon-coated Fe, Co, and Ni nanoparticles. J. Appl. Phys., 80, 103 - 108. DOI:10.1063/1.36276510.1063/1.362765Search in Google Scholar

Alexandrescu, R., Morjan, I., Dumitrache, F., Birjega, R., Jaeger, C., Mutschke, H., Soare, I., Gavrila-Florescu, L. & Ciupina, V. (2007). Structural characteristics of Fe3C-based nanomaterials prepared by laser pyrolysis from different gas-phase precursors. Materials Science and Engineering C, 27, 1181 - 1184. DOI:10.1016/j.msec.2006.07.00810.1016/j.msec.2006.07.008Search in Google Scholar

Moon, J.-M., An, K.H., Lee, Y.H., Park, Y.S., Bae, D. J. & Park, G. -S. (2001). High-Yield Purification Process of Singlewalled Carbon Nanotubes. J. Phys. Chem. B, 105, 5677-5681. DOI:10.1021/jp0102365.10.1021/jp0102365Search in Google Scholar

Colomer, J.-F., Piedigrosso, P., Fonseca, A. & Nagy, J.B. (1999). Different purification methods of carbon nanotubes produced by catalytic synthesis. Synth. Met., 103, 2482 - 2483. DOI:10.1016/S0379-6779(98)01066-2.10.1016/S0379-6779(98)01066-2Search in Google Scholar

Tohji, K., Takahashi, H., Shinoda, Y., Jeyadevan, B., Matsuoka, I., Saito, Y., Kasuya, A., Ito, S. & Nishina, Y. (1997). Purification procedure for single-walled nanotubes. J. Phys. Chem. B, 101, 1974-1978. DOI:10.1021/jp962888c.10.1021/jp962888cSearch in Google Scholar

Hernadi, K., Siska, A., Thien-Nga, L., Forró, L. & Kiricsi, I. (2001). Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ionics, 141, 203 - 209. DOI:10.1016/S0167-2738(01)00789-5.10.1016/S0167-2738(01)00789-5Search in Google Scholar

Ando, Y., Zhao, X., Inoue, S. & Iijima, S. (2002). Mass production of multiwalled carbon nanotubes by hydrogen arc discharge. J. Cryst. Growth, 237 - 239, 1926 - 1930. DOI:10.1016/S0022-0248(01)02248-5.10.1016/S0022-0248(01)02248-5Search in Google Scholar

Morishita, K. & Takarada, T. (1999). Scanning electron microscope observation of the purification behaviour of carbon nanotubes. J. Mater. Sci., 34, 1169 - 1174. DOI:10.1023/A:1004544503055.10.1023/A:1004544503055Search in Google Scholar

Ivanov, V., Fonseca, A., Nagy, J.B., Lucas, A., Lambin, P., Bernaerts, D. & Zhang, X.B. (1995). Catalytic production and purification of nanotubules having fullerene-scale diameters. Carbon, 33, 1727 - 1738. DOI:10.1016/0008-6223(95)00132-1.10.1016/0008-6223(95)00132-1Search in Google Scholar

Arabczyk, W., Narkiewicz, U., Pełech, I., Podsiadły, M., Ekiert, E. & Pelka, R. (2007). Pol. Patent No. 384781.Search in Google Scholar

Arabczyk, W. & Ekiert, E. (2008). Pol. Pat. No. 386622.Search in Google Scholar

Arabczyk, W. & Ekiert, E. (2008). Pol. Pat. No. 386623.Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering