Open Access

Magnetic nanoparticles as targeted delivery systems in oncology

Widder KJ, Senyei AE, Ranney DF. Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv Pharmacol Chemother 1979; 16: 213-71.10.1016/S1054-3589(08)60246-XSearch in Google Scholar

Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Krüger A, et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 2002; 9: 102-9.10.1038/sj.gt.330162411857068Search in Google Scholar

Morana G, Salviato E, Guarise A. Contrast agents for hepatic MRI. Cancer Imaging 2007; 7 Spec No A: S24-7.10.1102/1470-7330.2007.9001272796217921081Search in Google Scholar

Kreuter J. Drug targeting with nanoparticles. Eur J Drug Metab Pharmacokinet 1994; 19: 253-6.10.1007/BF031889287867668Search in Google Scholar

Filipponi L, Sutherland D, editors. Nanotechnology: a brief introduction [Internet]. Aarhus: University of Aarhus; 2007 [cited 2010 March 11]. Available from: http://www.nanocap.eu. http://www.nanocap.euSearch in Google Scholar

Hunter R. Electrokinetics and the zeta potential. In: Hunter R, editor. Foundations of colloid science. New York: Oxford University Press; 2001. p. 373-434.Search in Google Scholar

Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 2009; 4: 634-41.10.1038/nnano.2009.24219809453Search in Google Scholar

Gubin S. Introduction. In: Gubin S, editor. Magnetic nanoparticles. Weinheim: Wiley-VCH; 2009. p. 1-24.10.1002/9783527627561Search in Google Scholar

Bondi JF, Oyler KD, Ke X, Schiffer P, Schaak RE. Chemical synthesis of air-stable manganese nanoparticles. J Am Chem Soc 2009; 131: 9144-5.10.1021/ja901372q19566087Search in Google Scholar

Alexiou C, Jurgons R. Magnetic drug targeting. In: Andrä W, Nowak H, editors. Magnetism in medicine: a handbook. Berlin: Wiley-VCH; 2007. p. 596-605.10.1002/9783527610174.ch4hSearch in Google Scholar

Lowery T. Nanomaterials-based magnetic sensors switch biosensors. In: Kumar C, editor. Nanomaterials for the life sciences. Weinheim: Wiley-VCH; 2009. p. 3-54.Search in Google Scholar

Wilhelm C, Cebers A, Bacri JC, Gazeau F. Deformation of intracellular endosomes under a magnetic field. Eur Biophys J 2003; 32: 655-60.10.1007/s00249-003-0312-012811432Search in Google Scholar

Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ. Magnetite biomineralization in the human brain. Proc Natl Acad Sci U S A 1992; 89: 7683-7.10.1073/pnas.89.16.7683497751502184Search in Google Scholar

Schultheiss-Grassi PP, Wessiken R, Dobson J. TEM investigations of biogenic magnetite extracted from the human hippocampus. Biochim Biophys Acta 1999; 1426: 212-6.10.1016/S0304-4165(98)00160-3Search in Google Scholar

Soenen SJ, De Cuyper M. Assessing cytotoxicity of (iron oxide-based) nanoparticles: an overview of different methods exemplified with cationic magnetoliposomes. Contrast Media Mol Imaging 2009; 4: 207-19.10.1002/cmmi.28219810053Search in Google Scholar

Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26: 3995-4021.10.1016/j.biomaterials.2004.10.01215626447Search in Google Scholar

Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 2007; 41: 284-90.10.1021/es061349a17265960Search in Google Scholar

Prijic S, Scancar J, Romih R, Cemazar M, Bregar VB, Znidarsic A, et al. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. J Membr Biol 2010; 236: 167-79.10.1007/s00232-010-9271-4291426320602230Search in Google Scholar

Chertok B, David AE, Yang VC. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 2010; 31: 6317-24.10.1016/j.biomaterials.2010.04.043289606020494439Search in Google Scholar

Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46: 6387-92.Search in Google Scholar

Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008; 60: 1615-26.10.1016/j.addr.2008.08.00518840489Search in Google Scholar

Leuschner C, Kumar CS, Hansel W, Soboyejo W, Zhou J, Hormes J. LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Res Treat 2006; 99: 163-76.10.1007/s10549-006-9199-716752077Search in Google Scholar

Babincova M, Babinec P. Magnetic drug delivery and targeting: principles and applications. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2009; 153: 243-50.10.5507/bp.2009.04220208962Search in Google Scholar

Mosso JA, Rand RW. Ferromagnetic silicone vascular occlusion: a technic for selective infarction of tumors and organs. Ann Surg 1973; 178: 663-8.10.1097/00000658-197311000-0002113557524748306Search in Google Scholar

Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, et al. Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 1996; 56: 4694-701.Search in Google Scholar

Kumar A, Jena PK, Behera S, Lockey RF, Mohapatra S. Multifunctional magnetic nanoparticles for targeted delivery. Nanomedicine 2010; 6: 64-9.10.1016/j.nano.2009.04.002331930619446653Search in Google Scholar

Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 1996; 13: 245-55.10.3109/026520496090260138860681Search in Google Scholar

Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C. Recent advances in magnetofection and its potential to deliver siRNAs in vitro. Methods Mol Biol 2009; 487: 111-46.10.1007/978-1-60327-547-7_619301645Search in Google Scholar

Luo D, Saltzman WM. Enhancement of transfection by physical concentration of DNA at the cell surface. Nat Biotechnol 2000; 18: 893-5.10.1038/7852310932162Search in Google Scholar

Plank C, Schillinger U, Scherer F, Bergemann C, Rémy JS, Krötz F, et al. The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 2003; 384: 737-47.10.1515/BC.2003.08212817470Search in Google Scholar

Huth S, Lausier J, Gersting SW, Rudolph C, Plank C, Welsch U, et al. Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer. J Gene Med 2004; 6: 923-36.10.1002/jgm.57715293351Search in Google Scholar

Plank C, Scherer F, Schillinger U, Bergemann C, Anton M. Magnetofection: enhancing and targeting gene delivery with superparamagnetic nanoparticles and magnetic fields. J Liposome Res 2003; 13: 29-32.10.1081/LPR-12001748612725725Search in Google Scholar

Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci U S A 2005; 102: 9469-74.10.1073/pnas.0503879102117226615972807Search in Google Scholar

Kim JS, Yoon TJ, Yu KN, Noh MS, Woo M, Kim BG, et al. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 2006; 7: 321-6.10.4142/jvs.2006.7.4.321324213817106221Search in Google Scholar

Ma YJ, Gu HC. Study on the endocytosis and the internalization mechanism of aminosilane-coated Fe3O4 nanoparticles in vitro. J Mater Sci Mater Med 2007; 18: 2145-9.10.1007/s10856-007-3015-817665123Search in Google Scholar

Petri-Fink A, Chastellain M, Juillerat-Jeanneret L, Ferrari A, Hofmann H. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 2005; 26: 2685-94.10.1016/j.biomaterials.2004.07.023Search in Google Scholar

Prabha S, Zhou WZ, Panyam J, Labhasetwar V. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 2002; 244: 105-15.10.1016/S0378-5173(02)00315-0Search in Google Scholar

Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 2001; 71: 39-51.10.1016/S0168-3659(00)00358-8Search in Google Scholar

Jordan A, Scholz R, Wust P, Schirra K, Schiestel T, Schmidt H, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater 1999; 194: 185-96.10.1016/S0304-8853(98)00558-7Search in Google Scholar

Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 2003; 24: 1001-11.10.1016/S0142-9612(02)00440-4Search in Google Scholar

Sincai M, Ganga D, Ganga M, Argherie D, Bica D. Antitumor effect of magnetite nanoparticles in cat mammary adenocarcinoma. J Magn Magn Mater 2005; 293: 438-41.10.1016/j.jmmm.2005.02.074Search in Google Scholar

Mykhaylyk O, Antequera YS, Vlaskou D, Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat Protoc 2007; 2: 2391-411.10.1038/nprot.2007.35217947981Search in Google Scholar

Wei W, Xu C, Wu H. Use of PEI-coated magnetic iron oxide nanoparticles as gene vectors. J Huazhong Univ Sci Technolog Med Sci 2004; 24: 618-20.10.1007/BF0291137315791859Search in Google Scholar

Chen CB, Chen JY, Lee WC. Fast transfection of mammalian cells using superparamagnetic nanoparticles under strong magnetic field. J Nanosci Nanotechnol 2009; 9: 2651-9.10.1166/jnn.2009.44919438016Search in Google Scholar

Godbey WT, Wu KK, Mikos AG. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci U S A 1999; 96: 5177-81.10.1073/pnas.96.9.51772183710220439Search in Google Scholar

Florea BI, Meaney C, Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci 2002; 4: E12.10.1208/ps040312Search in Google Scholar

Smith CA, de la Fuente J, Pelaz B, Furlani EP, Mullin M, Berry CC. The effect of static magnetic fields and tat peptides on cellular and nuclear uptake of magnetic nanoparticles. Biomaterials 2010; 31: 4392-400.10.1016/j.biomaterials.2010.01.096Search in Google Scholar

Song HP, Yang JY, Lo SL, Wang Y, Fan WM, Tang XS, et al. Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials 2010; 31: 769-78.10.1016/j.biomaterials.2009.09.085Search in Google Scholar

Murata M, Takahashi S, Kagiwada S, Suzuki A, Ohnishi S. pH-dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and cationic peptides. Biochemistry 1992; 31: 1986-92.10.1021/bi00122a013Search in Google Scholar

Plank C, Zatloukal K, Cotten M, Mechtler K, Wagner E. Gene transfer into hepatocytes using asialoglycoprotein receptor mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug Chem 1992; 3: 533-9.10.1021/bc00018a012Search in Google Scholar

Green M, Loewenstein PM. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 1988; 55: 1179-88.10.1016/0092-8674(88)90262-0Search in Google Scholar

Frankel AD, Bredt DS, Pabo CO. Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 1988; 240: 70-3.10.1126/science.28329442832944Search in Google Scholar

Xylourgidis N, Fornerod M. Acting out of character: regulatory roles of nuclear pore complex proteins. Dev Cell 2009; 17: 617-25.10.1016/j.devcel.2009.10.01519922867Search in Google Scholar

Xu C, Xie J, Kohler N, Walsh EG, Chin YE, Sun S. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting. Chem Asian J 2008; 3: 548-52.10.1002/asia.200700301269242518080259Search in Google Scholar

Müller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 1996; 4: 161-70.10.3109/106118696090159738959488Search in Google Scholar

Storm G, Belliot SO, Daemen T, Lasic DD. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 1995; 17: 31-48.10.1016/0169-409X(95)00039-ASearch in Google Scholar

Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 2008; 5: 316-27.10.1021/mp7001285Search in Google Scholar

Mykhaylyk O, Cherchenko A, Ilkin A, Dudchenko N, Ruditsa V, Novoseletz M, et al. Glial brain tumor targeting of magnetite nanoparticles in rats. J Magn Magn Mater 2001; 225: 241-47.10.1016/S0304-8853(00)01264-6Search in Google Scholar

Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, et al. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 2006; 89: 338-47.10.1093/toxsci/kfj027Search in Google Scholar

Lacava ZGM, Azevedo RB, Lacava LM, Martins EV, Garcia VAP, Rébula CA, et al. Toxic effects of ionic magnetic fluids in mice. J Magn Magn Mater 1999; 194: 90-95.10.1016/S0304-8853(98)00583-6Search in Google Scholar

Lacava LM, Garcia VAP, Kückelhaus S, Azevedo RB, Sadeghiani N, Buske N, et al. Long-term retention of dextran-coated magnetite nanoparticles in the liver and spleen. J Magn Magn Mater 2004; 272-276: 2434-35.10.1016/j.jmmm.2003.12.852Search in Google Scholar

Olden K, editor. Health effects from exposure to power-line frequency electric and magnetic fields [Internet]. Research triangle park (NC): National institute of environmental health sciences (US); 1999 [cited 2010 April 15]. Available from: http://www.niehs.nih.gov/health/docs/niehs-report.pdfSearch in Google Scholar

Leszczynski D. Rapporteur report: cellular, animal and epidemiological studies of the effects of static magnetic fields relevant to human health. Prog Biophys Mol Biol 2005; 87: 247-53.10.1016/j.pbiomolbio.2004.08.014Search in Google Scholar

Saunders R. Static magnetic fields: animal studies. Prog Biophys Mol Biol 2005; 87: 225-39.10.1016/j.pbiomolbio.2004.09.001Search in Google Scholar

Sato K, Yamaguchi H, Miyamoto H, Kinouchi Y. Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sm-Co magnets. Biochim Biophys Acta 1992; 1136: 231-8.10.1016/0167-4889(92)90111-NSearch in Google Scholar

Nakahara T, Yaguchi H, Yoshida M, Miyakoshi J. Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology 2002; 224: 817-22.10.1148/radiol.224301130012202720Search in Google Scholar

Coletti D, Teodori L, Albertini MC, Rocchi M, Pristerà A, Fini M, et al. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Citometry Part A 2007; 71A: 846-56.10.1002/cyto.a.20447Search in Google Scholar

Kotani H, Kawaguchi H, Shimoaka T, Iwasaka M, Ueno S, Ozawa H, et al. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. J Bone Miner Res 2002; 17: 1814-21.10.1359/jbmr.2002.17.10.1814Search in Google Scholar

Sun C, Lee JS, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 2008; 60: 1252-65.10.1016/j.addr.2008.03.018Search in Google Scholar

Saini S, Stark DD, Hahn PF, Wittenberg J, Brady TJ, Ferrucci JT. Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 1987; 162: 211-6.10.1148/radiology.162.1.3786765Search in Google Scholar

Saini S, Stark DD, Hahn PF, Bousquet JC, Introcasso J, Wittenberg J, et al. Ferrite particles: a superparamagnetic MR contrast agent for enhanced detection of liver carcinoma. Radiology 1987; 162: 217-22.10.1148/radiology.162.1.3786766Search in Google Scholar

Weissleder R, Stark DD. Magnetic resonance imaging of liver tumors. Semin Ultrasound CT MR 1989; 10: 63-77.Search in Google Scholar

Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990; 175: 489-93.10.1148/radiology.175.2.2326474Search in Google Scholar

Chertok B, David AE, Moffat BA, Yang VC. Substantiating in vivo magnetic brain tumor targeting of cationic iron oxide nanocarriers via adsorptive surface masking. Biomaterials 2009; 30: 6780-7.10.1016/j.biomaterials.2009.08.040Search in Google Scholar

Chertok B, David AE, Huang Y, Yang VC. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics. J Control Release 2007; 122: 315-23.10.1016/j.jconrel.2007.05.030Search in Google Scholar

ClinicalTrials.gov [Internet]. Bethesda (MD): National Institutes of Health (US); 1993 - . Pre-operative staging of pancreatic cancer using superparamagnetic iron oxide magnetic resonance imaging (SPIO MRI) [cited 2010 September 12].; [about 3 p.]. Available from: http://clinicaltrials.gov/ct2/show/NCT00920023Search in Google Scholar

Jain R, Dandekar P, Patravale V. Diagnostic nanocarriers for sentinel lymph node imaging. J Control Release 2009; 138: 90-102.10.1016/j.jconrel.2009.05.010Search in Google Scholar

Zhu L, Loo WT, Chow LW. Circulating tumor cells in patients with breast cancer: possible predictor of micro-metastasis in bone marrow but not in sentinel lymph nodes. Biomed Pharmacother 2005; 59: S355-8.10.1016/S0753-3322(05)80077-0Search in Google Scholar

Cammareri P, Lombardo Y, Francipane MG, Bonventre S, Todaro M, Stassi G. Isolation and culture of colon cancer stem cells. Methods Cell Biol 2008; 86: 311-24.10.1016/S0091-679X(08)00014-9Search in Google Scholar

Joo KM, Nam DH. Prospective identification of cancer stem cells with the surface antigen CD133. Methods Mol Biol 2009; 568: 57-71.10.1007/978-1-59745-280-9_5Search in Google Scholar

Wang GY, Li Y, Yu YM, Yu B, Zhang ZY, Liu Y, et al. Detection of disseminated tumor cells in bone marrow of gastric cancer using magnetic activated cell sorting and fluorescent activated cell sorting. J Gastroenterol Hepatol 2009; 24: 299-306.10.1111/j.1440-1746.2008.05633.xSearch in Google Scholar

Multhoff G, Botzler C, Wiesnet M, Müller E, Meier T, Wilmanns W, et al. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 1995; 61: 272-9.10.1002/ijc.2910610222Search in Google Scholar

Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 2005; 21: 637-47.10.1080/02656730500158360Search in Google Scholar

Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, et al. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 2007; 81: 53-60.10.1007/s11060-006-9195-0Search in Google Scholar

FDA-Approved Drugs [Internet]. Boston (MA): CenterWatch. 1995 - . FDA Approved Drugs for Oncology [cited 2010 September 14]; [about 7 p.]. Available from: http://www.centerwatch.com/drug-information/fda-approvals/drug-areas.aspx?AreaID=12Search in Google Scholar

Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE. Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol 1983; 19: 135-9.10.1016/0277-5379(83)90408-XSearch in Google Scholar

Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, et al. Clinical experiences with magnetic drug targeting: a phase I study with 4'-epidoxorubicin in 14 patients with advanced solid tumors. Cancer Res 1996; 56: 4686-93.Search in Google Scholar

Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Res 2000; 60: 6641-8.Search in Google Scholar

Goodwin SC, Bittner CA, Peterson CL, Wong G. Single-dose toxicity study of hepatic intra-arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci 2001; 60: 177-83.10.1093/toxsci/60.1.177Search in Google Scholar

Koda J, Venook A, Walser E. A multicenter, phase I/II trial of hepatic intra-arterial delivery of doxorubicin hydrochloride adsorbed to magnetic targeted carriers in patients with hepatocellular carcinoma. Eur J Cancer 2002; 38: S18.10.1016/S0959-8049(02)80690-6Search in Google Scholar

Wilson MW, Kerlan RK, Fidelman NA, Venook AP, LaBerge JM, Koda J, et al. Hepatocellular carcinoma: regional therapy with a magnetic targeted carrier bound to doxorubicin in a dual MR imaging/conventional angiography suite-initial experience with four patients. Radiology 2004; 230: 287-93.10.1148/radiol.230102149314695402Search in Google Scholar

ClinicalTrials.gov [Internet]. Bethesda (MD): National Institutes of Health (US); 1993 - . Safety and efficacy of doxorubicin adsorbed to magnetic beads Vs. IV doxorubicin in treating liver cancer [cited 2010 May 5]; [about 2 p.]. Available from: http://clinicaltrials.gov/ct/show/NCT00034333Search in Google Scholar

Kamensek U, Sersa G. Targeted gene therapy in radiotherapy. Radiol Oncol 2008; 42: 115-35.10.2478/v10019-008-0009-1Search in Google Scholar

Cemazar M, Jarm T, Sersa G. Cancer electrogene therapy with interleukin-12. Curr Gene Ther 2010; 10: 300-11.10.2174/156652310791823425Search in Google Scholar

Krötz F, Sohn HY, Gloe T, Plank C, Pohl U. Magnetofection potentiates gene delivery to cultured endothelial cells. J Vasc Res 2003; 40: 425-34.10.1159/000073901Search in Google Scholar

Krötz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, et al. Magnetofection-a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 2003; 7: 700-10.10.1016/S1525-0016(03)00065-0Search in Google Scholar

Jahnke A, Hirschberger J, Fischer C, Brill T, Köstlin R, Plank C, et al. Intratumoral gene delivery of feIL-2, feIFN-gamma and feGM-CSF using magnetofection as a neoadjuvant treatment option for feline fibrosarcomas: a phase-I study. J Vet Med A 2007; 54: 599-606.10.1111/j.1439-0442.2007.01002.xSearch in Google Scholar

Hüttinger C, Hirschberger J, Jahnke A, Köstlin R, Brill T, Plank C, et al. Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial. J Gene Med 2008; 10: 655-67.10.1002/jgm.1185Search in Google Scholar

Lu Y, Madu CO. Viral-based gene delivery and regulated gene expression for targeted cancer therapy. Expert Opin Drug Deliv 2010; 7: 19-35.10.1517/17425240903419608Search in Google Scholar

Russ V, Wagner E. Cell and tissue targeting of nucleic acids for cancer gene therapy. Pharm Res 2007; 24: 1047-57.10.1007/s11095-006-9233-9Search in Google Scholar

Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465-8.10.1126/science.1690918Search in Google Scholar

Ardehali A, Fyfe A, Laks H, Drinkwater DC, Qiao JH, Lusis AJ. Direct gene transfer into donor hearts at the time of harvest. J Thorac Cardiovasc Surg 1995; 109: 716-20.10.1016/S0022-5223(95)70353-5Search in Google Scholar

Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, et al. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat-angiogenesis and angioma formation. J Am Coll Cardiol 2000; 35: 1323-30.10.1016/S0735-1097(00)00522-2Search in Google Scholar

Mueller C, Graessmann A, Graessmann M. Mapping of early SV40-specific functions by microinjection of different early viral DNA fragments. Cell 1978; 15: 579-85.10.1016/0092-8674(78)90026-0Search in Google Scholar

Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1982; 1: 841-5.10.1002/j.1460-2075.1982.tb01257.xSearch in Google Scholar

Sanford JC, Klein TM, Wolf ED, Allen N. Delivery of substances into cells and tissues using a particle bombardment process. Particul Sci Technol 1987; 5: 27-37.10.1080/02726358708904533Search in Google Scholar

Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997; 23: 953-9.10.1016/S0301-5629(97)00025-2Search in Google Scholar

Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther 1999; 6: 1258-66.10.1038/sj.gt.330094710455434Search in Google Scholar

McKnight T, Melechko A, Griffin G, Guillorn MA, Merkulov VI, Serna F, et al. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology 2003; 14: 551-6.10.1088/0957-4484/14/5/313Search in Google Scholar

Ohlfest JR, Freese AB, Largaespada DA. Nonviral vectors for cancer gene therapy: prospects for integrating vectors and combination therapies. Curr Gene Ther 2005; 5: 629-41.10.2174/15665230577496474916457652Search in Google Scholar

Morishita N, Nakagami H, Morishita R, Takeda S, Mishima F, Terazono B, et al. Magnetic nanoparticles with surface modification enhanced gene delivery of HVJ-E vector. Biochem Biophys Res Commun 2005; 334: 1121-6.10.1016/j.bbrc.2005.06.20416134237Search in Google Scholar

Mah C, Zolotukhin I, Fraites T, Dobson J, Batich C, Byrne B. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol Ther 2000; 1: 239S.Search in Google Scholar

Xenariou S, Griesenbach U, Ferrari S, Dean P, Scheule RK, Cheng SH, et al. Using magnetic forces to enhance non-viral gene transfer to airway epithelium in vivo. Gene Ther 2006; 13: 1545-52.10.1038/sj.gt.330280316738690Search in Google Scholar

Boussif O, Lezoualc'h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 1995; 92: 7297-301.10.1073/pnas.92.16.7297Search in Google Scholar

Pan X, Guan J, Yoo JW, Epstein AJ, Lee LJ, Lee RJ. Cationic lipid-coated magnetic nanoparticles associated with transferrin for gene delivery. Int J Pharm 2008; 358: 263-70.10.1016/j.ijpharm.2008.02.020Search in Google Scholar

Xiang JJ, Nie XM, Tang JQ, Wang YJ, Li Z, Gan K, et al. In vitro gene transfection by magnetic iron oxide nanoparticles and magnetic field increases transfection efficiency. Zhonghua Zhong Liu Za Zhi 2004; 26: 71-4.Search in Google Scholar

Yang SY, Sun JS, Liu CH, Tsuang YH, Chen LT, Hong CY, et al. Ex vivo magnetofection with magnetic nanoparticles: a novel platform for nonviral tissue engineering. Artif Organs 2008; 32: 195-204.10.1111/j.1525-1594.2007.00526.xSearch in Google Scholar

Ino K, Kawasumi T, Ito A, Honda H. Plasmid DNA transfection using magnetite cationic liposomes for construction of multilayered gene-engineered cell sheet. Biotechnol Bioeng 2008; 100: 168-76.10.1002/bit.21738Search in Google Scholar

Kamau Chapman SW, Hassa PO, Koch-Schneidemann S, von Rechenberg B, Hofmann-Amtenbrink M, Steitz B, et al. Application of pulsed-magnetic field enhances non-viral gene delivery in primary cells from different origins. J Magn Magn Mater 2008; 320: 1517-27.10.1016/j.jmmm.2008.01.002Search in Google Scholar

Chorny M, Polyak B, Alferiev IS, Walsh K, Friedman G, Levy RJ. Magnetically driven plasmid DNA delivery with biodegradable polymeric nanoparticles. FASEB J 2007; 21: 2510-9.10.1096/fj.06-8070comSearch in Google Scholar

Kamau SW, Hassa PO, Steitz B, Petri-Fink A, Hofmann H, Hofmann-Amtenbrink M, et al. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res 2006; 34: e40.10.1093/nar/gkl035Search in Google Scholar

McBain S, Griesenbach U, Xenariou S, Keramane A, Batich CD, Alton EWFW, et al. Magnetic nanoparticles as gene delivery agents: enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology 2008; 19: 1-5.10.1088/0957-4484/19/40/405102Search in Google Scholar

Maass G, Schweighoffer T, Berger M, Schmidt W, Herbst E, Zatloukal K, et al. Tumor vaccines: effects and fate of IL-2 transfected murine melanoma cells in vivo. Int J Immunopharmacol 1995; 17: 65-73.10.1016/0192-0561(94)00085-3Search in Google Scholar

Schmidt W, Schweighoffer T, Herbst E, Maass G, Berger M, Schilcher F, et al. Cancer vaccines: the interleukin 2 dosage effect. Proc Natl Acad Sci U S A 1995; 92: 4711-4.10.1073/pnas.92.10.4711420147753870Search in Google Scholar

Kircheis R, Küpcü Z, Wallner G, Wagner E. Cytokine gene-modified tumor cells for prophylactic and therapeutic vaccination: IL-2, IFN-gamma, or combination IL-2 + IFN-gamma. Cytokines Cell Mol Ther 1998; 4: 95-103.Search in Google Scholar

eISSN:
1581-3207
ISSN:
1318-2099
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology