Open Access

Antenna calibration models in height determinations in ASG-EUPOS’ POZGEO-D service – a case study


Cite

GNSS observations in a network of permanent stations are a complex systems which offer both post-processing and corrections sent in real-time. In Poland such a system, known as the Polish Active Geodetic Network (ASG-EUPOS), has been in operation since June 2008. The GNSS development forces also continuous modernization of ASG-EUPOS (e.g.: GPS/GLONASS receivers mounting, ASG+ project) which aims to improve the accuracy of position determination. One of the factors limiting the accuracy (especially the vertical component) is antenna phase center variations (PCV) problem.

PCV problem is resolved using the antenna calibration process. As a result, antenna phase center corrections models (PCC) are created. So far three methods have been developed to determine GNSS antenna PCV. For this reason and because of some problems in introducing of absolute models at present we can speak of three models of receiver antennas PCV (so called: relative, absolute converted and absolute).

The aim of this paper was to study the height differences caused by using different calibration models in GNSS observation processing done in the ASG-EUPOS POZGEO-D service. The analysis was done using 3 days of GNSS data, collected with four different receivers and antennas, divided by one hour observation sessions. The results of the calculations show that switching between PCV models may have a visible effect on height determination, particularly in high accuracy applications.

eISSN:
2083-6104
ISSN:
0208-841X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other