Open Access

Quality assurance and dosimetric analysis of intensity modulation radiotherapy using compensators for head and neck cancers


Cite

Bortfeld T, Schlegel W, Rhein B. Decomposition of pencil beam kernels for fast dose calculations in three-dimensional treatment planning. Med Phys. 1993; 20: 311-318.10.1118/1.597070Search in Google Scholar

Boyer AL. Compensating filters for high energy X rays. Med Phys. 1982; 9: 429-433.10.1118/1.595225Search in Google Scholar

Chang SX, Cullip TJ, Deschesne KM, et al. Compensators: an alternative IMRT delivery technique. J Appl Clin Med Phys. 2004; 5: 15-36.10.1120/jacmp.v5i3.1965Search in Google Scholar

Chufal KS, Nangia S, Tyagi A et al. 2439: Intensity Modulated Radiotherapy Using Compensators for Head and Neck Cancer Patients: Impact of Dosimetric Parameters on Clinical Outcome. Int J Radiat Oncol Biol Phys. 2006 Nov 1; 66(3): S453-454.Search in Google Scholar

Djordjevich A, Bonham DJ, Hussein EM, Andrew JW, Hale ME. Optimal design of radiation compensators. Med Phys. 1990; 17: 397-404.10.1118/1.596519Search in Google Scholar

Esthappan J, Mutic S, Harms WB, Dempsey JF, Low DA. Dosimetry of therapeutic photon beams using an extended dose range film. Med Phys. 2002; 29: 2438-45.10.1118/1.1508379Search in Google Scholar

Fact sheet atuimo 2.5D 72200-0153/Rev. 01/ 02.2005. Bebig Isotopen-und Medizintechnik GmbH.Search in Google Scholar

Faddegon BA, Pfalzner P. Computer aided design and verification of megavoltage tissue compensators for oblique beams. Med Phys. 1988; 15: 757-762.10.1118/1.596190Search in Google Scholar

Garry A, Ezzal, et al. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM Radiation Therapy Committee. Med Phys. 2003; (30): 2089-2115.10.1118/1.1591194Search in Google Scholar

Jiang SB, Ayyangar KM. On compensator design for photon beam intensity-modulated conformal therapy. Med Phys. 1998: 25(5): 668-675.10.1118/1.598250Search in Google Scholar

Lee N, Xia P, Fischbein NJ, Akazawa P, Akazawa C, Quivey JM. Intensity-modulated radiation therapy for head-and-neck cancer: the UCSF experience focusing on target volume delineation. Int J Radiat Oncol Biol Phys. 2003; 57: 49-60.10.1016/S0360-3016(03)00405-XSearch in Google Scholar

Mageras GS, Mohan R, Burman C, Barest GD, Kutcher GJ. Compensators for three-dimensional treatment planning. Med Phys. 1991; 18: 133-40.10.1118/1.5966992046597Search in Google Scholar

Nangia S, Chufal KS, Arivazhagan V, Srinivas P, Tyagi A, Ghosh D. Compensator-based intensity-modulated radiotherapy in head and neck cancer: our experience in achieving dosimetric parameters and their clinical correlation. Clin Oncol. 2006; 18: 485-92.10.1016/j.clon.2006.03.01816909973Search in Google Scholar

Olch AJ. Dosimetric accuracy of the ITP inverse treatment planning system. Med Phys. 2002; 29: 2484-8.10.1118/1.151316212462712Search in Google Scholar

Olch AJ. Dosimetric performance of an enhanced dose range radiographic film for intensity-modulated radiation therapy quality assurance. Med Phys. 2002; 29: 2159-2168.10.1118/1.150039812349938Search in Google Scholar

Preiser K, Bortfeld T, Hartwig K, Schlegel W, Stein J. A new program for inverse radiotherapy planning. In: Proceeding of XII international conference on the use of computers in radiation therapy; Salt Lake City, Utah. 1997. p. 425-428.Search in Google Scholar

Salz H, Wiezorek T, Scheithauer M, et al. IMRT with compensators for head-and-neck cancers treatment technique, dosimetric accuracy, and practical experiences. Strahlenther Onkol. 2005; 181: 665-672.10.1007/s00066-005-1402-y16220406Search in Google Scholar

Yoda K, Aoki Y. A multiportal compensator system for IMRT delivery. Med Phys. 2003; 30: 880-886.10.1118/1.156785112772996Search in Google Scholar

eISSN:
1425-4689
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics