Open Access

A compressibility and compactibility study of real tableting mixtures: the effect of granule particle size


Cite

1. B. Johansson, F. Nicklasson and G. Alderborn, Effect of pellet size on degree of deformation and densification during compression and on compactability of microcrystalline cellulose pellets, Int. J. Pharm. 163 (1998) 35_48; DOI: 0.1016/S0378-5173(97)00355-4.Search in Google Scholar

2. G. Alderborn and C. Nyström, Studies on the direct compression of tablets. IV. The effect of particle size on the mechanical strength of tablets, Acta Pharm. Suec. 19 (1982) 381_390.Search in Google Scholar

3. A. McKenna and D. F. McCaffery, Effect of particle size on the compaction mechanism and tensile strength of tablets, J. Pharm. Pharmacol. 34 (1982) 347_351; DOI: 0.1111/j.2042-7158.1982.tb04 727.x.Search in Google Scholar

4. H. Vromans, A. H. De Boer, G. K. Bolhuis, C. F. Lerk and K. D. Kussendrager, Studies on tableting properties of lactose. Part I. The effect of initial particle size on binding properties and dehydration characteristics of lactose, Acta Pharm. Suec. 22 (1985) 163_172.Search in Google Scholar

5. A. H. De Boer, H. Vromans, C. F. Lerk, G. K. Bolhius, K. D. Kussendrager and H. Bosch, Studies on tableting properties of lactose. Part III. The consolidation behaviour of sieve fractions of crystalline á- lactose monohydrate, Pharm. Weekbl. Sci. Ed. 8 (1986) 145_150.Search in Google Scholar

6. K.A. Riepma, J. Veenstra, A. H. De Boer, G. K. Bolhuis, K. Zuurman, C. F. Lerk and H. Vromans, Consolidation and compaction of powder mixtures: II. Binary mixtures of different particle size fractions of á-lactose monohydrate, Int. J. Pharm. 76 (1991) 9_15.Search in Google Scholar

7. K. A. Riepma, K. Zuurman, G. K. Bolhuis, A. H. De Boer and C. F. Lerk, Consolidation and compaction of powder mixtures: III. Binary mixtures of different particle size fractions of different types of crystalline lactose, Int. J. Pharm. 85 (1992) 121_128; DOI: 0.1016/0378-5173(92) 90141-N.Search in Google Scholar

8. A. Nokhodchi, M. H. Rubinstein and J. L. Ford, The effect of particle size and viscosity grade on the compaction properties of hydroxypropylmethylcellulose 2208, Int. J. Pharm. 126 (1995) 189-197; DOI: 0.1016/0378-5173(95)04122-2.10.1016/0378-5173(95)04122-2Search in Google Scholar

9. M. Eriksson and G. Alderborn, The effect of particle fragmentation and deformation on the interparticulate bond formation process during powder compaction, Pharm. Res. 12 (1995) 1031-1039.10.1023/A:1016214616042Search in Google Scholar

10. K. Van der Voort Maarschalk, K. Zuurman, H. Vromans, G. K. Bolhuis and C. F. Lerk, Porosity expansion of tablets as a result of bonding and deformation of particle solids, Int. J. Pharm. 140 (1996) 185_193; DOI: 0.1016/0378-5173(96)04584-X.Search in Google Scholar

11. A. Adolfsson and C. Nyström, Tablet strength, porosity, elasticity and solid state structure of tablets compressed at high loads, Int. J. Pharm. 132 (1996) 95_106; DOI: 0.1016/0378-5173(95) 04336-5.Search in Google Scholar

12. C. Sun and D. J. W. Grant, Effects of initial particle size on the tableting properties of L-lysine monohydrochloride dihydrate powder, Int. J. Pharm. 215 (2001) 221_228; DOI: 0.1016/S0378-5173(00)00701-8.Search in Google Scholar

13. J. S. Kaerger, S. Edge and R. Price, Influence of particle size and shape on flowability and compactibility of binary mixtures of paracetamol and microcrystalline cellulose, Eur. J. Pharm. Sci. 22 (2-3) (2004) 173_179; DOI: 0.1016/j.ejps.2004.03.005.Search in Google Scholar

14. S. Patel, A. M. Kaushal and A. K. Bansal, Effect of particle size and compression force on compaction behaviour and derived mathematical parameters of compressibility, Pharm. Res. 24 (1) (2006) 111_124; DOI: 0.1007/s11095-006-9129-8.Search in Google Scholar

15. M. Wikberg and G. Alderborn, Compression characteristics of granulated materials. II. Evaluation of granule fragmentation during compression by tablet permeability and porosity measurements, Int. J. Pharm. 62 (1990) 229_241; DOI: 0.1016/0378-5173(90)90236-W.Search in Google Scholar

16. K. Zuurman, K. A. Riepma, G. K. Bolhuis, H. Vromans and C. F. Lerk, The relationship between bulk density and compactibility of lactose granulations, Int. J. Pharm. 102 (1994) 1_9; DOI: 0.1016/0378-5173(94)90033-7.Search in Google Scholar

17. K.A. Riepma, H. Vromans, K. Zuurman and C. F. Lerk, The effect of dry granulation on the consolidation and compaction of crystalline lactose, Int. J. Pharm. 97 (1993) 29_38; DOI: 0.1016/0378-5173(93)90123-W.Search in Google Scholar

18. M. Rehula, The effect of granule size on dissolution of drugs from tablets, Folia Pharmacol. 8 (1985) 101_107.Search in Google Scholar

19. A. B. Bangudu, O. F. Akande and V. T. Adewuyi, The effect of interacting variables on the compaction performance of paracetamol/millet starch tablets, Pharm. World J. 8 (1991) 87_90.Search in Google Scholar

20. G. Alderborn, E. Boryesson, M. Glazer and C. Nyström, Studies on direct compression of tablets. XIX. The effect of particle size and shape on the mechanical strength of sodium bicarbonate tablets, Acta Pharm. Suec. 25 (1988) 31_40.Search in Google Scholar

21. M. Šantl, I. Ili}, F. Vre~er and S. Baumgartner, A compressibility and compactibility study of real tableting mixtures: The impact of wet and dry granulation versus a direct tableting mixture, Int. J. Pharm. 414 (2011) 131_139; DOI: 0.1016/j.ijpharm.2011.05.025.Search in Google Scholar

22. European Pharmacopoeia, 7th Ed., European Directorate for the Quality of Medicines and Healthcare, Council of Europe, Strasbourg 2010.Search in Google Scholar

23. R. W. Heckel, Density-pressure relationships in powder compaction, Trans. Metall. Soc. AIME. 221 (1961) 671-675.Search in Google Scholar

24. E. E. Walker, The properties of powders VI: The compressibility of powders. Trans. Faraday Soc. 19 (1923) 73-82; DOI: 0.1039/tf9231900073.10.1039/tf9231900073Search in Google Scholar

25. J. M. Sonnergaard, Quantification of the compactibility of pharmaceutical powders, Eur. J.Pharm. Biopharm. 63 (2006) 270-277; DOI: 0.1016/j.ejpb.2005.10.012.10.1016/j.ejpb.2005.10.01216682176Search in Google Scholar

26. A. G. Dean, K. M. Sullivan and M. M. Soe, 2008. OpenEpi: Open Source Epidemiologic Statistics for Public Health. Version 2.2.1. http://www.OpenEpi.com (updated March 6, 2008, accessed October 16, 2008).Search in Google Scholar

27. I. Ilić, J. P. Kása, R. Dreu, K. Pintye-Hüdi and S. Sr~i~, The compressibility and compactibility of different types of lactose, Drug Dev. Ind. Pharm. 35 (2009) 1271-1280; DOI: 0.1080/0363904090 2932945.10.1080/0363904090293294519466896Search in Google Scholar

28. N. A. Armstrong and R. F. Haines-Nutt, Elastic recovery and surface area changes in compacted powder systems, J. Pharm. Pharmacol. 24 (1972) 135_36; DOI: 0.1016/0032-5910(74)80054-9.Search in Google Scholar

29. J. T. Fell and J. M. Newton, Determination of tablet strength by the diametral compression test, J. Pharm. Sci. 59 (1970) 688-691; DOI: 0.1002/jps.2600590523.10.1002/jps.26005905235446428Search in Google Scholar

30. M. Riippi, O. Antikainen, T. Niskanen and J. Yliruusi, The effect of compression force on surface structure, crushing strength, friability and disintegration time of erythromycin acistrate tablets, Revija 46 (1998) 339_345; DOI: 0.1016/S0939-6411(98)00043-5.Search in Google Scholar

31. R. V. Haware, I. Tho and A. Bauer-Brandl, Evaluation of a rapid approximation method for the elastic recovery of tablets, Powder Technol. 202 (2010) 71_77; DOI: 0.1016/j.powtec.2010.04.012.Search in Google Scholar

eISSN:
1846-9558
ISSN:
1330-0075
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other