Open Access

Simultaneous determination of iron and copper in children's sera by FAAS


Cite

P. J. Parsons and F. Barbosa, Jr., Atomic spectrometry and trends in clinical laboratory medicine, Spectrochim. Acta Part B: At. Spectr. 62 (2007) 992-1003; DOI: 10.1016/j.sab.2007.03.007.10.1016/j.sab.2007.03.007Search in Google Scholar

N. Weinstock and M. Uhlemann, Automated determination of copper in undiluted serum by atomic-absorption spectroscopy, Clin. Chem. 27 (1981) 1438-1440.10.1093/clinchem/27.8.1438Search in Google Scholar

T. Makino and K. Takahara, Direct determination of plasma copper and zinc in infants by atomic absorption with discrete nebulization, Clin. Chem. 27 (1981) 1445-1447.10.1093/clinchem/27.8.1445Search in Google Scholar

T. Makino and K. Takahara, Reference values: Accurate determination of plasma iron in infants by discrete nebulization in atomic absorption, Clin. Chem. 27 (1981) 2073.Search in Google Scholar

S. Salmela and E. Vuori, Improved direct determination of copper and zinc in a single serum dilution by atomic absorption spectrophotometry, At. Spectrosc. 5 (1984) 146-149.Search in Google Scholar

C. Terrés-Martos, M. Navarro-Alarcón, F. Martín-Lagos, H. L. G. de la Serrana and M. C. López-Martínez, Determination of copper levels in serum of healthy subjects by atomic absorption spectrometry, Sci. Total Environ. 198 (1997) 97-103; DOI: 10.1016/S0048-9697(97)05448-X.10.1016/S0048-9697(97)05448-XSearch in Google Scholar

C. M. P. V. Lopes, A. A. Almeida, J. L. M. Santos and J. L. F. C. Lima, Automatic flow system for the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, Anal. Chim. Acta 555 (2006) 370-376; DOI: 10.1016/j.aca.2005.09.013.10.1016/j.aca.2005.09.013Search in Google Scholar

Analytical Methods for Atomic Absorption Spectrometry, PerkinElmer Bodenseewerk, Überlingen, Germany, August 2000, pp. 157, 160.Search in Google Scholar

S. Luterotti and T. Vukman, Acidic method for determination of copper in blood serum by FAAS, Acta Pharm. 52 (2002) 143-148.Search in Google Scholar

R. L. Plackett and J. P. Burman, The design of optimum multifactorial experiments, Biometrika 33 (1946) 305-325; DOI: 10.1093/biomet/33.4.305.10.1093/biomet/33.4.305Search in Google Scholar

W. J. Youden and E. H. Steiner, Statistical Manual of the Association of Official Analytical Chemists, Association of Official Analytical Chemists, Washington (DC) 1975.Search in Google Scholar

B. V. Fisher, Statistics in chemistry - collaborative trials, Anal. Proc. 21 (1984) 443-448; DOI: 10.1039/ap9842100443.10.1039/ap9842100443Search in Google Scholar

L. D. Torbeck, Assay validation: Ruggedness and robustness with designed experiments, Pharm. Technol. 20 (1996) 169-172.Search in Google Scholar

L. D. Torbeck and R. C. Branning, Designed experiments - A vital role in validation, Pharm. Technol. 20 (1996) 108-114.Search in Google Scholar

Z. Flegar-Meštrić, N. Jagarinec, B. Šurina, D. Vrhovski-Hebrang, V. Preden-Kereković, S. Perkov and B. Smuđ-Makalouš, Reference intervals for biochemistry analytes determined in the sera of children and adolescents from Zagreb, Croatia, Biochem. Med. 6 (1996) 277-288.Search in Google Scholar

G. Lockitch, A. C. Halstead, L. Wadsworth, G. Quigley, L. Reston and B. Jacobson, Age- and sex-specific pediatric reference intervals and correlations for zinc, copper, selenium, iron, vitamins A and E, and related proteins, Clin. Chem. 34 (1988) 1625-1628.10.1093/clinchem/34.8.1625Search in Google Scholar

eISSN:
1846-9558
ISSN:
1330-0075
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other