Open Access

Neural network based feedback linearization control of a servo-hydraulic vehicle suspension system

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Semantic Knowledge Engineering (special section, pp. 9 - 95), Grzegorz J. Nalepa and Antoni Ligęza (Eds.)

Al-Holou, N., Lahdhiri, T., Joo, D. S., Weaver, J. and Al-Abbas, F. (2002). Sliding mode neural network inference fuzzy logic control for active suspension system, IEEE Transactions on Fuzzy Systems 10(2): 234-245.10.1109/91.995124Search in Google Scholar

Biglarbegian, M., Melek, W. and Golnaraghi, F. (2008). A novel neuro-fuzzy controller to enhance the performance of vehicle semi-active suspension systems, Vehicle System Dynamics 46(8): 691-711.10.1080/00423110701585420Search in Google Scholar

Boukezzoula, R., Galichet, S. and Foulloy, L. (2007). Fuzzy feedback linearizing controller and its equivalence with fuzzy nonlinear internal model control structure, International Journal of Applied Mathematics and Computer Science 17(2): 233-248, DOI: 10.2478/v10006-007-0021-4.10.2478/v10006-007-0021-4Search in Google Scholar

Boutalis, Y. S. (2004). Neural network approaches for feedback linearization, Journal of Control Engineering and Applied Informatics 6(1): 15-26.Search in Google Scholar

Buckner, G. D., Schuetze, K. T. and Beno, J. H. (2001). Intelligent feedback linearization for active vehicle suspension control, Journal of Dynamic Systems, Measurement and Control: Transactions of ASME 123(4): 727-733.10.1115/1.1408945Search in Google Scholar

Cao, J., Liu, H., Li, P. and Brown, D. (2008). State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies, IEEE Transactions of Intelligent Transportation Systems 9(3): 392-405.10.1109/TITS.2008.928244Search in Google Scholar

Chantranuwathana, S. and Peng, H. (2004). Adaptive robust force control for vehicle active suspension, International Journal of Adaptive Control and Signal Processing 18(2): 83-102.10.1002/acs.783Search in Google Scholar

Christophe, L., Swevers, J. and Sas, P. (2005). Robust linear control of an active suspension on a quarter car test-rig, Control Engineering Practice 13(5): 577-586.10.1016/j.conengprac.2004.04.018Search in Google Scholar

Dahunsi, O. A., Pedro, J. O. and Nyandoro, O. T. (2009). Neural network-based model predictive control of a servo-hydraulic vehicle suspension system, Proceedings of 2009 IEEE AFRICON, Nairobi, Kenya, pp. 1-6, DOI: 10.1109/AFRCON.2009.5308111.10.1109/AFRCON.2009.5308111Search in Google Scholar

Dahunsi, O. A., Pedro, J. O. and Nyandoro, O. T. (2010a). Neural network-based PID control of a servo-hydraulic vehicle suspension system, Proceedings of the 7th South African Conference on Computational and Applied Mechanics (SACAM10), Pretoria, South Africa, pp. 1-6.Search in Google Scholar

Dahunsi, O. A., Pedro, J. O. and Nyandoro, O. T. (2010b). System identification and neural network based PID control of servo-hydraulic vehicle suspension system, SAIEE Africa Research Journal 101(3): 93-105.10.23919/SAIEE.2010.8531554Search in Google Scholar

D'Amato, F. J. and Viassolo, D. E. (2000). Fuzzy control for active suspensions, Mechatronics 10(1): 897-920.10.1016/S0957-4158(99)00079-3Search in Google Scholar

Deng, J., Becerra, V. M. and Stobart, R. (2009). Input constraints handling in an MPC/feedback linearization scheme, International Journal of Applied Mathematics and Computer Science 19(2): 219-232, DOI: 10.2478/v10006-009-0018-2.10.2478/v10006-009-0018-2Search in Google Scholar

Du, H. and Zhang, N. (2008). Multiobjective static output feedback control design for vehicle suspensions, Journal of System Design and Dynamics 2(1): 228-239.10.1299/jsdd.2.228Search in Google Scholar

Du, H. and Zhang, N. (2009). Static output feedback control for electrohydraulic active suspensions via T-S fuzzy model approach, Journal of Dynamic Systems, Measurement and Control: Transactions of ASME 131(5): 051004-1-051004-11.10.1115/1.3117194Search in Google Scholar

Ehtiwesh, I. A. S. and Dorovic, Z. (2009). Comparative analysis of different control strategies for electro-hydraulic servo systems, Proceedings of the World Academy of Science, Engineering and Technology 56(6): 906-909.Search in Google Scholar

Eski, I. and Yildrim, S. (2009). Vibration control of vehicle active suspension system using a new robust neural network control system, Simulation Modelling Practice and Theory 17(5): 778-793.10.1016/j.simpat.2009.01.004Search in Google Scholar

Fallah, M. S., Bhat, R. and Xie, W. (2009). H∞ robust control of active suspensions: A practical point of view, Proceedings of the 2009 American Control Conference, St Louis, MO, USA, pp. 1385-1390.Search in Google Scholar

Feng, J. Z., Li, J. and Yu, F. (2003). GA-based PID and fuzzy logic control for active vehicle suspension system, International Journal of Automotive Technology 4(4): 181-191.Search in Google Scholar

Fiahlo, I. and Balas, G. J. (2002). Road adaptive active suspension using linear parameter-varying gain-scheduling, IEEE Transactions on Control Systems Technology 10(1): 43-54.10.1109/87.974337Search in Google Scholar

Gao, B., Tilley, D. G., Williams, R. A., Bean, A. and Donahue, J. (2006). Control of hydropneumatic active suspension based on a non-linear quarter-car model, Proceedings of the Institute of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 220(1): 75-31.10.1243/095965105X77501Search in Google Scholar

Gao, Z. (2002). From linear to nonlinear control means: A practical progression, ISA Transactions 41(2): 177-189.10.1016/S0019-0578(07)60077-9Search in Google Scholar

Garces, F. R., Becerra, V. M., Kambhampti, C. and Warwick, K. (2003). Strategies for Feedback Linearisation: A Dynamic Neural Network Approach, Springer, London.10.1007/978-1-4471-0065-2Search in Google Scholar

Gaspar, P., Szaszi, I. and Bokor, J. (2003). Active suspension design using linear parameter varying control, International Journal of Autonomous Systems 1(2): 206-221.10.1504/IJVAS.2003.003539Search in Google Scholar

Goodwin, G. C., Rojas, O. and Takata, H. (2001). Nonlinear control via generalized feedback linearization using neural networks, Asian Journal of Control 3(2): 79-88.10.1111/j.1934-6093.2001.tb00047.xSearch in Google Scholar

Hada, M. K., Menon A. and Bhave S. Y. (2007). Optimisation of an active suspension force controller using genetic algorithm for random input, Defence Science Journal 57(5): 691-706.10.14429/dsj.57.1806Search in Google Scholar

Hagan, M. T. and Demuth, H. B. (1999). Neural networks for control, American Control Conference, San Diego, CA, USA, pp. 1642-1656.Search in Google Scholar

Hassanzadeh, I., Alizadeh, G., Shiirjoposht, N. P. and Hashemzadeh, F. (2010). A new optimal nonlinear approach to half car active suspension control, IACSIT International Journal of Engineering and Technology 2(1): 78-84.10.7763/IJET.2010.V2.104Search in Google Scholar

He, Y. and McPhee, J. (2005). A design methodology for mechatronic vehicles: Application of multidisciplinary optimization, multibody dynamics and genetic algorithms, Vehicle Systems Dynamics 43(10): 697-733.10.1080/00423110500151077Search in Google Scholar

Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control applications, Automatica 33(10): 1781-1817.10.1016/S0005-1098(97)00101-5Search in Google Scholar

Isidori, A. (1989). Nonlinear Control System, Springer-Verlag, Berlin.10.1007/978-3-662-02581-9Search in Google Scholar

Jelali, M. and Kroll, A. (2003). Hydraulic Servo-Systems: Modelling, Identification and Control, Springer-Verlag, London.10.1007/978-1-4471-0099-7Search in Google Scholar

Jin, Y. and Yu, D. J. (2008). Adaptive neuron control using an integrated error approach with application to active suspensions, International Journal of Automotive Technology 9(3): 329-335.10.1007/s12239-008-0040-7Search in Google Scholar

Kar, I. and Behera, L. (2009). Direct adaptive neural control for affine nonlinear systems, Applied Soft Computing 9(2): 756-764.10.1016/j.asoc.2008.10.001Search in Google Scholar

Koshkouei, A. J. and Burnham, K. J. (2008). Sliding mode controllers for active suspensions, Proceedings of the 17th IFAC World Congress, COEX, Seoul, Korea, pp. 1-6.Search in Google Scholar

Kumar, M. S. (2008). Development of active suspension system for automobiles using PID controller, Proceedings of the World Congress on Engineering, WCE 2008, London, UK, pp. 1472-1477.Search in Google Scholar

Kumar, M. S. and Vijayarangan, S. (2007). Analytical and experimental studies on active suspension system of light passenger vehicle to improve ride comfort, Mechanika 65(3): 34-41.Search in Google Scholar

Kuo, Y. and Li, T. S. (1999). GA-based fuzzy PI/PD controller for automotive active suspension system, IEEE Transactions on Industrial Electronics 46(6): 88-100.10.1109/41.807984Search in Google Scholar

Lufty, O. F., Noor, S. B. M., Marhaban, M. H. and Abbas, K. A. (2009). A geneticatlly trained adaptive neuro-fuzzy inference system network utilized as a PID-like feedback controller for non-linear systems, Proceedings of the Institute of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 223(3): 289-429.10.1243/09596518JSCE683Search in Google Scholar

Nakkarat, P. and Kuntanapreeda, S. (2009). Observer-based backstepping force control of an electrohydraulic actuator, Control Engineering Practice 17(8): 895-902.10.1016/j.conengprac.2009.02.011Search in Google Scholar

Norgaard, M., Ravn, O., Poulsen, N. K. and Hansen, L. K. (2003). Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner's Handbook, Springer, Boston, MA.Search in Google Scholar

O'Dwyer, A. (2006). Handbook of PI and PID Controller Tuning Rules, Imperial College Press, London.10.1142/p424Search in Google Scholar

Pedro, J. O. (2003). Design and performance of an active vehicle suspension system, Proceedings of the 2nd International Conference on Applied Mechanics and Materials, ICAMM 2003, Durban, South Africa, pp. 203-209.Search in Google Scholar

Pedro, J. O. (2007). H2-LQG/LTR controller design for active suspension systems, R and D Journal of the South African Institution of Mechanical Engineering 23(2): 32-41.Search in Google Scholar

Pedro, J. O. and Mgwenya, T. R. (2004). LQR control of a full - car active suspension with actuator dynamics, Proceedings of the 4th South African Conference on Applied Mechanics, SACAM'04, Johannesburg, South Africa, pp. 1-9.Search in Google Scholar

Poursamad, A. (2009). Adaptive feedback linearization control of antilock braking system using neural networks, Mechatronics 19(5): 767-773.10.1016/j.mechatronics.2009.03.003Search in Google Scholar

Poussot-Vassal, C., Sename, O., Dugard, L., Gaspar, P., Szabo, Z. and Bokor, J. (2006). Multi-objective qLPV H∞/H2 control of a half vehicle, Proceedings of the 10th MINI Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest, Hungary, pp. 1-6.Search in Google Scholar

Ryu, S., Kim, Y. and Park, Y. (2008). Robust H∞ preview control of an active suspension system with norm-bounded uncertainties, International Journal of Automotive Technology 9(5): 585-592.10.1007/s12239-008-0069-7Search in Google Scholar

Salem, A. A. A. and Aly, A. A. (2009). Fuzzy control of a quarter-car suspension systems, Proceedings of the World Academy of Science, Engineering and Technology (53): 258-263.Search in Google Scholar

Seo, J., Venugopal, R. and Kenne, J. (2007). Feedback linearization based control of a rotational hydraulic drive, Control Engineering Practice 15(12): 1495-1507.10.1016/j.conengprac.2007.02.009Search in Google Scholar

Sharkawy, A. B. (2005). Fuzzy and adaptive fuzzy control for the automobiles' active suspension system, Vehicle Systems Dynamics 43(10): 795-806.10.1080/00423110500097783Search in Google Scholar

Shen, X. and Peng, H. (2003). Analysis of active suspension systems with hydraulic actuators, Proceedings of the 2003 IAVSD Conference, Atsuigi, Japan, pp. 1-10.Search in Google Scholar

Shi, J., Li, X. W. and Zhang, J. W. (2010). Feedback linearization and sliding mode control for active hydropneumatic suspension of a special-purpose vehicle, Proceedings of the Institute of Mechanical Engineers, Part D: Journal of Automobile Engineering 211(3): 171-181.Search in Google Scholar

Shirahatt, A., Prasad, P. S. S., Panzade, P. and Kulkarni, M. M. (2008). Optimal design of passenger car suspension for ride and road holding, Journal of the Brazillian Society of Mechanical Science and Engineering 30(1): 66-76.10.1590/S1678-58782008000100010Search in Google Scholar

He, S., Reif, K. and Unbehauen, R. (1998). A neural approach for control of nonlinear systems with feedback linearization, Control Engineering Practice 9(6): 1409-1421.10.1109/72.728391Search in Google Scholar

Slotine, J. J. and Li, W. (1991). Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, NJ.Search in Google Scholar

Yagiz, N., Sakman, L. E. and Guclu, R. (2008). Different control applications on a vehicle using fuzzy logic control, Sadhana 33(1): 15-25.10.1007/s12046-008-0002-9Search in Google Scholar

Yesildirek, A. and Lewis, F. L. (1995). Feedback linearization using neural networks, Automatica 31(11): 1659-1664.10.1016/0005-1098(95)00078-BSearch in Google Scholar

Yoshimura, T. and Teramura, I. (2005). Active suspension control of a one-wheel car model using single input rule modules fuzzy reasoning and a disturbance observer, Journal of Zhejiang University: Science 6A(4): 251-256.10.1631/jzus.2005.A0251Search in Google Scholar

ISSN:
1641-876X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics