Open Access

Numerical Approximation of Self-Consistent Vlasov Models for Low-Frequency Electromagnetic Phenomena

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Scientific Computation for Fluid Mechanics and Hyperbolic Systems (special issue), Jan Sokołowski and Eric Sonnendrücker (Eds.)

We present a new numerical method to solve the Vlasov-Darwin and Vlasov-Poisswell systems which are approximations of the Vlasov-Maxwell equation in the asymptotic limit of the infinite speed of light. These systems model low-frequency electromagnetic phenomena in plasmas, and thus "light waves" are somewhat supressed, which in turn allows the numerical discretization to dispense with the Courant-Friedrichs-Lewy condition on the time step. We construct a numerical scheme based on semi-Lagrangian methods and time splitting techniques. We develop a four-dimensional phase space algorithm for the distribution function while the electromagnetic field is solved on a two-dimensional Cartesian grid. Finally, we present two nontrivial test cases: (a) the wave Landau damping and (b) the electromagnetic beam-plasma instability. For these cases our numerical scheme works very well and is in agreement with analytic kinetic theory.

ISSN:
1641-876X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics